Силиконовая резина, обладая антиадгезионными свойствами, трудно склеивается сама с собой и с другими материалами.
Обычные клеи для этого не пригодны. Поэтому были разработаны специальные грунтовки и клеи на силиконовой основе, которые обеспечивают достаточный склеивающий эффект. Склеивание возможно двумя принципиально различными способами:
а) использование вулканизирующего средства, обладающего адгезионными свойствами,
6) склеивание вулканизированных деталей между собой и с другими материалами с использованием клея.
четверг, 18 июня 2009 г.
Дополнительная вулканизация Силиконовой резины.
Силиконовая резина, вулканизированная на прессе или в канале с разогретым воздухом, обладает, как правило, хорошими показателями по прочности на растяжение, однако, другие качества, например остаточная деформация сжатия, оставляют желать лучшего. Поэтому в большинстве случаев требуется дополнительная вулканизация (отжиг).
Отжиг рекомендуется проводить в печи с циркуляцией воздуха. При этом необходимо следить за тем, чтобы детали не касались друг друга и воздух проходил беспрепятственно.
Для большинства изделий из силиконовой резины достаточна обработка в течение 2-6 часов при температуре +200°C, но, например, для изделий медтехники необходим более длительный отжиг при более высоких температурах. Для непрерывного отжига применяются более высокие температуры (до +350°C) с целью сокращения его продолжительности до 0,5-3 минут.
Показателем, который существенно улучшается после отжига, является остаточная деформация сжатия (остающееся изменение формы после обработки под давлением). Её величина должна быть по возможности минимальной в тех случаях, когда резиновые детали работают под давлением, т.е. в первую очередь прокладки.
Необходимое время отжига существенно зависит от толщины вулканизатов.
Для деталей толщиной менее 5 мм достаточно лишь несколько часов, в то время как для деталей толщиной более 20 мм требуется постепенный отжиг и более длительная обработка при необходимой температуре, с тем, чтобы все летучие компоненты испарились.
Детали из силиконовой резины, особенно после отжига, дают усадку, которая зависит от продолжительности и температуры отжига, от типа и размера деталей. Усадка составляет 2-5% и при изготовлении форм её необходимо учитывать.
Отжиг рекомендуется проводить в печи с циркуляцией воздуха. При этом необходимо следить за тем, чтобы детали не касались друг друга и воздух проходил беспрепятственно.
Для большинства изделий из силиконовой резины достаточна обработка в течение 2-6 часов при температуре +200°C, но, например, для изделий медтехники необходим более длительный отжиг при более высоких температурах. Для непрерывного отжига применяются более высокие температуры (до +350°C) с целью сокращения его продолжительности до 0,5-3 минут.
Показателем, который существенно улучшается после отжига, является остаточная деформация сжатия (остающееся изменение формы после обработки под давлением). Её величина должна быть по возможности минимальной в тех случаях, когда резиновые детали работают под давлением, т.е. в первую очередь прокладки.
Необходимое время отжига существенно зависит от толщины вулканизатов.
Для деталей толщиной менее 5 мм достаточно лишь несколько часов, в то время как для деталей толщиной более 20 мм требуется постепенный отжиг и более длительная обработка при необходимой температуре, с тем, чтобы все летучие компоненты испарились.
Детали из силиконовой резины, особенно после отжига, дают усадку, которая зависит от продолжительности и температуры отжига, от типа и размера деталей. Усадка составляет 2-5% и при изготовлении форм её необходимо учитывать.
Наслоение Силиконовой резины.
Смеси силиконовой резины можно наносить методом погружения, намазывания рекельным ножом и каландрирования. Способ погружения предусматривает прохождение полотна ткани с помощью специального приспособления в 10-35% эмульсию силиконового каучука в растворителе. Затем растворитель при температуре менее +80°C испаряется, а каучуковая смесь вулканизируется на полотне ткани в шахтах с нагревом до температуры +120-250°C.
Метод погружения обладает тем преимуществом, что эмульсия хорошо пропитывает ткань. Резина при этом хорошо закрепляется на поверхности ткани, что даёт возможность получать очень тонкие покрытия. Отрицательной стороной является относительно большой объем растворителя, требующийся при этой методике.
Способ погружения используется, как правило, для нанесения резиновых слоев на стеклоткань.
При методе нанесения эмульсия из силиконового каучука наносится на ткань с одной стороны при помощи рекельного ножа. Содержание плотного вещества должно составлять 40-60%. Затем следуют те же операции, как и при погружении.
По сравнению с методом погружения нанесение позволяет получать более толстые слои и используется в тех случаях, когда нанесение требуется только с одной стороны.
Для обоих названных способов пригодны только те смеси силиконового каучука, которые легко растворяются. В качестве растворителей используются: толуол, ксилол, тест-бензин, бутилацетат, декалин, перхлорэтилен и т.д. Эмульсии готовятся в аппарате с быстро вращающейся мешалкой (волчковые смесители). Целесообразно начинать готовить эмульсию при соотношении 1:1 и лишь затем добавить остаток растворителя.
Каландрирование является третьим способом нанесения. При этом смесь силиконового каучука, готовая к вулканизации (без растворителя), наносится с помощью каландра на полосу ткани. Покрытая этой смесью ткань пропускается через гидравлический пресс, канал с подогретым воздухом или вулканизируется в вулканизирующей машине непрерывного действия. При способе каландрирования сцепление между резиной и тканью не такое прочное, как в двух предыдущих методах. С другой стороны, здесь можно использовать смеси, как правило, плохо диспергирующиеся, но позволяющие добиться высоких характеристик по прочности. Методом каландрирования можно наносить толстые слои как с одной стороны поверхности, так и с двух.
Метод погружения обладает тем преимуществом, что эмульсия хорошо пропитывает ткань. Резина при этом хорошо закрепляется на поверхности ткани, что даёт возможность получать очень тонкие покрытия. Отрицательной стороной является относительно большой объем растворителя, требующийся при этой методике.
Способ погружения используется, как правило, для нанесения резиновых слоев на стеклоткань.
При методе нанесения эмульсия из силиконового каучука наносится на ткань с одной стороны при помощи рекельного ножа. Содержание плотного вещества должно составлять 40-60%. Затем следуют те же операции, как и при погружении.
По сравнению с методом погружения нанесение позволяет получать более толстые слои и используется в тех случаях, когда нанесение требуется только с одной стороны.
Для обоих названных способов пригодны только те смеси силиконового каучука, которые легко растворяются. В качестве растворителей используются: толуол, ксилол, тест-бензин, бутилацетат, декалин, перхлорэтилен и т.д. Эмульсии готовятся в аппарате с быстро вращающейся мешалкой (волчковые смесители). Целесообразно начинать готовить эмульсию при соотношении 1:1 и лишь затем добавить остаток растворителя.
Каландрирование является третьим способом нанесения. При этом смесь силиконового каучука, готовая к вулканизации (без растворителя), наносится с помощью каландра на полосу ткани. Покрытая этой смесью ткань пропускается через гидравлический пресс, канал с подогретым воздухом или вулканизируется в вулканизирующей машине непрерывного действия. При способе каландрирования сцепление между резиной и тканью не такое прочное, как в двух предыдущих методах. С другой стороны, здесь можно использовать смеси, как правило, плохо диспергирующиеся, но позволяющие добиться высоких характеристик по прочности. Методом каландрирования можно наносить толстые слои как с одной стороны поверхности, так и с двух.
Литье под давлением Силиконовой резины.
Обработка смесей силиконового каучука методом литья под давлением целесообразна при крупносерийном производстве.
При такой технологии применяется значительно более высокие температуры, но время вулканизации здесь существенно короче.
Изготовленные методом литья под давлением формы мягче других примерно на 5-10 единиц А Шора. Это можно компенсировать при изготовлении смеси за счёт увеличения количества наполнителя.
Подача смеси осуществляется роликовым ленточным перегружателем. Этот перегружатель либо протягивается и сгружает смесь на каландр, либо устанавливается на литьевой машине.
При такой технологии применяется значительно более высокие температуры, но время вулканизации здесь существенно короче.
Изготовленные методом литья под давлением формы мягче других примерно на 5-10 единиц А Шора. Это можно компенсировать при изготовлении смеси за счёт увеличения количества наполнителя.
Подача смеси осуществляется роликовым ленточным перегружателем. Этот перегружатель либо протягивается и сгружает смесь на каландр, либо устанавливается на литьевой машине.
Формование и литьевая прессовка Силиконовой резины.
При формовании, а также литьевой прессовке смесь заливается или запрессовывается в форму и выдерживается под давлением определённое время. Температура при этом доводится до температуры вулканизации (в зависимости от перекиси).
В качестве смазки пресс-форм используется разбавленный водой раствор моющих средств.
Давление, как правило, составляет от 40 до 80 кг/см2.
Продолжительность воздействия температуры и давления зависит, как правило, от толщины формы и определяется экспериментальным путём. При толщине изделия до 10 мм достаточно, как правило, 10-15 минут.
Если в форму попадает воздух, то в вулканизате образуются коричневые плохо провулканизированные места. Поэтому при вальцовке смесей и при заполнении форм необходимо следить за тем, чтобы туда не проникал воздух.
Важно при закрытии форм обеспечить удаление воздуха.
При загрузке заготовки в горячую форму надо помнить, что прессовка должна следовать немедленно. В противном случае смесь начинает вулканизировать и не растекается достаточно по форме.
Во многих случаях полезно оставить резину охлаждаться до +80°C под давлением.
Если это невозможно, то следует проверить, не начнёт ли эта форма деформироваться.
В качестве смазки пресс-форм используется разбавленный водой раствор моющих средств.
Давление, как правило, составляет от 40 до 80 кг/см2.
Продолжительность воздействия температуры и давления зависит, как правило, от толщины формы и определяется экспериментальным путём. При толщине изделия до 10 мм достаточно, как правило, 10-15 минут.
Если в форму попадает воздух, то в вулканизате образуются коричневые плохо провулканизированные места. Поэтому при вальцовке смесей и при заполнении форм необходимо следить за тем, чтобы туда не проникал воздух.
Важно при закрытии форм обеспечить удаление воздуха.
При загрузке заготовки в горячую форму надо помнить, что прессовка должна следовать немедленно. В противном случае смесь начинает вулканизировать и не растекается достаточно по форме.
Во многих случаях полезно оставить резину охлаждаться до +80°C под давлением.
Если это невозможно, то следует проверить, не начнёт ли эта форма деформироваться.
понедельник, 15 июня 2009 г.
Каучуки
13)Силоксановый=Силиконовый (СКТ). Плотность каучука 1700-2000кг/м 3 , предел прочности 35-80МПа, относительное удлинение 360% .
СКТ — синтетический каучук теплостйкий. Их применяют как эластичные материалы специального назначения в различных отраслях промышленности, многих областях техники. Силоксановые резины используют для изготовления уплотнителей, мембран, профильных деталей для герметизации дверей и окон, кабин самолетов, а также гибких соединений, выдерживающих очень низкие температуры в высоких слоях атмосферы, значительные концентрации озона и солнечной радиации. Их сопротивление старению и диэлектрические характеристики также весьма высоки.
Высокая теплостойкость резин из силоксанового каучука, позволяет применять их также для изготовления резинометаллических виброизоляторов (амортизаторов), антивибраторов воздухопроводов, оболочек свечей зажигания, уплотнителей прожекторов и т. п. Следует сказать также об оснащении силоксановым резинами промышленных печей и различных аппаратов, работающих при высоких температурах (башен для крекинга нефтепродуктов, газопроводов, рекуперационных установок и т. д.). Из резин на основе силоксанового каучука изготавливают теплостойкие рукава. Кроме того, повышенная стоимость таких резин окупается длительной работоспособностью их по сравнению с обычными резинами.
В растворителях и маслах он набухает, имеет низкую механическую стойкость, высокую газопроницаемость, плохо сопротивляется истиранию.
Выпускаются каучуки СКТ, СКТВ, СКТВ-1 и СКТН и др.
14)Фторсилоксановый=Фторсиликоновый= (СКТФТ ). Сочетает хорошие температурные характеристики силиконов с определенной химической стойкостью на маслах и топливах. Обеспечивает значительное расширение области применения силиконов. Из-за весьма ограниченных механических свойств рекомендуется применять фторсиликоны только в неподвижных соединениях. Первичное применение нашли в топливных системах при температурах до +177оС.
15) Эпихлоргидрин – современный эластопласт востребованный прежде всего ввиду превосходной газонепроницаемости при отличной устойчивости к нефтяным маслам. Устойчив к озону, окислению, атмосферным воздействиям и солнечному свету.
К недостаткам следует отнести сложность механической обработки и возможность проявления коррозионной активности полимера.
СКТ — синтетический каучук теплостйкий. Их применяют как эластичные материалы специального назначения в различных отраслях промышленности, многих областях техники. Силоксановые резины используют для изготовления уплотнителей, мембран, профильных деталей для герметизации дверей и окон, кабин самолетов, а также гибких соединений, выдерживающих очень низкие температуры в высоких слоях атмосферы, значительные концентрации озона и солнечной радиации. Их сопротивление старению и диэлектрические характеристики также весьма высоки.
Высокая теплостойкость резин из силоксанового каучука, позволяет применять их также для изготовления резинометаллических виброизоляторов (амортизаторов), антивибраторов воздухопроводов, оболочек свечей зажигания, уплотнителей прожекторов и т. п. Следует сказать также об оснащении силоксановым резинами промышленных печей и различных аппаратов, работающих при высоких температурах (башен для крекинга нефтепродуктов, газопроводов, рекуперационных установок и т. д.). Из резин на основе силоксанового каучука изготавливают теплостойкие рукава. Кроме того, повышенная стоимость таких резин окупается длительной работоспособностью их по сравнению с обычными резинами.
В растворителях и маслах он набухает, имеет низкую механическую стойкость, высокую газопроницаемость, плохо сопротивляется истиранию.
Выпускаются каучуки СКТ, СКТВ, СКТВ-1 и СКТН и др.
14)Фторсилоксановый=Фторсиликоновый= (СКТФТ ). Сочетает хорошие температурные характеристики силиконов с определенной химической стойкостью на маслах и топливах. Обеспечивает значительное расширение области применения силиконов. Из-за весьма ограниченных механических свойств рекомендуется применять фторсиликоны только в неподвижных соединениях. Первичное применение нашли в топливных системах при температурах до +177оС.
15) Эпихлоргидрин – современный эластопласт востребованный прежде всего ввиду превосходной газонепроницаемости при отличной устойчивости к нефтяным маслам. Устойчив к озону, окислению, атмосферным воздействиям и солнечному свету.
К недостаткам следует отнести сложность механической обработки и возможность проявления коррозионной активности полимера.
четверг, 11 июня 2009 г.
Каучуки.
10)Полисульфидный (ПСК) Тиокол. Устойчив к топливу и маслам, к действию кислорода, озона, солнечного света. Имеет высокую газонепроницаемость — хороший герметизирующий материал, хорошие характеристики старения, высокое сопротивление раздиру. Водные дисперсии тиоколов используют для герметизации железобетонных резервуаров.
Механические свойства резины на основе тиокола невысокие.
11)Акрилатный (АК)/ Полиакрилатный. Достоинством акрилатных резин является стойкость к действию серосодержащих масел при высоких температурах; их широко применяют в автомобилестроении. Они стойки к действию кислорода, достаточно теплостойки, обладают адгезией к полимерам и металлам. Отличительные свойства акриловых каучуков - это их высокая тепло- и маслостойкость. По теплостойкости они уступают только силоксановым и фторкаучукам. Общей особенностью СКУ является исключительно высокое сопротивление истиранию. По этому показателю они значительно превосходят не только все типы каучуков общего и специального назначения, но и многие металлы. Наряду с этим СКУ отличаются хорошей эластичностью.
Рекомендуется применять акрилатные каучуки для различных тепло- и маслостойких уплотнительных изделий (например, сальников, колец, прокладок), рукавов, диафрагм, защитных покрытий, гумирования аппаратуры, липких лент ; для изготовления изделий, работающих в условиях истирания: различных формовых изделий, печатных валиков, обкладок трубопроводов и спускных желобов, по которым транспортируются абразивные материалы, и т. д.
Недостатками являются низкая морозостойкость, невысокая стойкость к воздействию горячей воды и пара.
СКУ на основе простых эфиров известны под марками СКУ-ПФ, СКУ-ПФЛ; на основе сложных эфиров - СКУ-8, СКУ-7, СКУ-8П, СКУ-7Л, СКУ-7П.
12)Фторкаучук (СКФ). Каучуки устойчивы к тепловому старению, воздействию масел, топлива, различных растворителей (даже при повышенных температурах), негорючи стойки к действию сильных окислителей (HNOз, Н2О2 и др.), применяются для уплотнительных изделий, диафрагм, гибких шлангов и т. д., не разрушаются при работе в атмосферных условиях в течение нескольких лет.
Вулканизованные резины обладают высоким сопротивлением истиранию. Теплостойкость длительная. Резины из фторкаучуков широко применяют в авто- и авиапромышленности. Из фторкаучуков изготавливают уплотнительные и герметизирующие детали, предназначенные для работы в маслах и топливах при 200 °С и выше. Фторкаучуки нашли применение и в производстве рукавов, шлангов и трубок для горючих агрессивных жидкостей и газов, изоляции проводов и кабелей, эксплуатируемых в условиях высоких температур. Из фторкаучуков изготовляют губчатый материал, характеризующийся высокой стойкостью к агрессивным жидкостям и электрической прочностью в широком интервале температур. Широко используют также герметики из фторкаучуков.
Недостатками является малая стойкость к большинству тормозных жидкостей и низкая эластичность.
Наиболее широкое промышленное применение нашли две марки фторкаучуков: СКФ-26 и СКФ-32, выпускается фторкаучук СКФ-26НМ для изготовления термомаслобензостойких герметиков.
Механические свойства резины на основе тиокола невысокие.
11)Акрилатный (АК)/ Полиакрилатный. Достоинством акрилатных резин является стойкость к действию серосодержащих масел при высоких температурах; их широко применяют в автомобилестроении. Они стойки к действию кислорода, достаточно теплостойки, обладают адгезией к полимерам и металлам. Отличительные свойства акриловых каучуков - это их высокая тепло- и маслостойкость. По теплостойкости они уступают только силоксановым и фторкаучукам. Общей особенностью СКУ является исключительно высокое сопротивление истиранию. По этому показателю они значительно превосходят не только все типы каучуков общего и специального назначения, но и многие металлы. Наряду с этим СКУ отличаются хорошей эластичностью.
Рекомендуется применять акрилатные каучуки для различных тепло- и маслостойких уплотнительных изделий (например, сальников, колец, прокладок), рукавов, диафрагм, защитных покрытий, гумирования аппаратуры, липких лент ; для изготовления изделий, работающих в условиях истирания: различных формовых изделий, печатных валиков, обкладок трубопроводов и спускных желобов, по которым транспортируются абразивные материалы, и т. д.
Недостатками являются низкая морозостойкость, невысокая стойкость к воздействию горячей воды и пара.
СКУ на основе простых эфиров известны под марками СКУ-ПФ, СКУ-ПФЛ; на основе сложных эфиров - СКУ-8, СКУ-7, СКУ-8П, СКУ-7Л, СКУ-7П.
12)Фторкаучук (СКФ). Каучуки устойчивы к тепловому старению, воздействию масел, топлива, различных растворителей (даже при повышенных температурах), негорючи стойки к действию сильных окислителей (HNOз, Н2О2 и др.), применяются для уплотнительных изделий, диафрагм, гибких шлангов и т. д., не разрушаются при работе в атмосферных условиях в течение нескольких лет.
Вулканизованные резины обладают высоким сопротивлением истиранию. Теплостойкость длительная. Резины из фторкаучуков широко применяют в авто- и авиапромышленности. Из фторкаучуков изготавливают уплотнительные и герметизирующие детали, предназначенные для работы в маслах и топливах при 200 °С и выше. Фторкаучуки нашли применение и в производстве рукавов, шлангов и трубок для горючих агрессивных жидкостей и газов, изоляции проводов и кабелей, эксплуатируемых в условиях высоких температур. Из фторкаучуков изготовляют губчатый материал, характеризующийся высокой стойкостью к агрессивным жидкостям и электрической прочностью в широком интервале температур. Широко используют также герметики из фторкаучуков.
Недостатками является малая стойкость к большинству тормозных жидкостей и низкая эластичность.
Наиболее широкое промышленное применение нашли две марки фторкаучуков: СКФ-26 и СКФ-32, выпускается фторкаучук СКФ-26НМ для изготовления термомаслобензостойких герметиков.
Каучуки
7)Хлоропреновый (ХК) = Найрит. Резины на основе наирита обладают высокой эластичностью, вибростойкостью, озоностойкостью, устойчивы к действию топлива и масел, хорошо сопротивляются тепловому старению. (Окисление каучука замедляется экранирующим действием хлора на двойные связи.)(масло -, бензо -, озоностойкость, негорючесть, повышенную теплостойкость), определяющих специфику его применения. Они не содержат серы в молекулярной цепи, более регулярны и кристаллизуются с большей скоростью. отличные динамические свойства. Наириты применяются в производстве клиновых ремней, формовой и неформовой техники, рукавов, лент и других РТИ. Резины на основе наирита с успехом используют для обкладки химической аппаратуры, подвергающейся действию щелочей, растворов солей и других агрессивных сред. Промышленностью выпускаются и жидкие наириты - которые используют для антикоррозионных и защитных покрытий.
Выпускаемые хлоропреновые каучуки могут быть разделены на две основные группы: модифицированные серой и модифицированные меркаптанами. К первой группе относятся наирит СР-50, наирит СР-100, наирит КР-50, которые содержат серу в молекулярной цепи, менее регулярны и имеют сравнительно невысокую скорость кристаллизации. Ко второй группе относятся наирит П, наирит НП, наирит ПНК, наирит НЕ. Освоено производство наиритов новых марок - ДФ, ДКР, ДН и др.
8)Хлорсульфированый полиэтилен (ХСПЭ) обладают повышенным сопротивлением истиранию при нагреве, озоно-, масло- и бензостойки, хорошие диэлектрики. Применяют как конструкционный и защитный материал (противокоррозионные, не обрастающие в морской воде водорослями и микроорганизмами покрытия), для защиты от воздействия излучения. Его вулканизаты обладают отличной озоностойкостью, высоким сопротивлением износу и стойкостью к атмосферным воздействиям, низким водопоглощением, хорошими диэлектрическими показателями, высокой химической стойкостью. ХСПЭ используют для обкладки конвейерных лент, транспортирующих нагретые материалы. Рекомендуется применять его в производстве рукавов, ремней, теплостойких уплотнителей, прокладок, губчатых изделий, специальных видов прорезиненных тканей.
К недостаткам относятся сравнительно высокое теплообразование, значительные остаточные деформации и газовыделение при нагревании.
9)Уретановый (СКУ)/ Полиуретановый обладают высокой прочностью, эластичностью, сопротивлением истиранию, маслобензостойкостыо. Стоек к кислороду и озону, его газонепроницаемость в 10 — 20 раз выше, чем у НК. Уретановые резины стойки к воздействию радиации. Резины на основе СКУ применяют для автомобильных шин, транспортерных лент, обкладки труб и желобов для транспортировки абразивных материалов, обуви и др.
На основе сложных полиэфиров вырабатывают СКУ-7, СКУ-8, СКУ-50; на основе простых полиэфиров - СКУ-ПФ, СКУ-ПФЛ.
Выпускаемые хлоропреновые каучуки могут быть разделены на две основные группы: модифицированные серой и модифицированные меркаптанами. К первой группе относятся наирит СР-50, наирит СР-100, наирит КР-50, которые содержат серу в молекулярной цепи, менее регулярны и имеют сравнительно невысокую скорость кристаллизации. Ко второй группе относятся наирит П, наирит НП, наирит ПНК, наирит НЕ. Освоено производство наиритов новых марок - ДФ, ДКР, ДН и др.
8)Хлорсульфированый полиэтилен (ХСПЭ) обладают повышенным сопротивлением истиранию при нагреве, озоно-, масло- и бензостойки, хорошие диэлектрики. Применяют как конструкционный и защитный материал (противокоррозионные, не обрастающие в морской воде водорослями и микроорганизмами покрытия), для защиты от воздействия излучения. Его вулканизаты обладают отличной озоностойкостью, высоким сопротивлением износу и стойкостью к атмосферным воздействиям, низким водопоглощением, хорошими диэлектрическими показателями, высокой химической стойкостью. ХСПЭ используют для обкладки конвейерных лент, транспортирующих нагретые материалы. Рекомендуется применять его в производстве рукавов, ремней, теплостойких уплотнителей, прокладок, губчатых изделий, специальных видов прорезиненных тканей.
К недостаткам относятся сравнительно высокое теплообразование, значительные остаточные деформации и газовыделение при нагревании.
9)Уретановый (СКУ)/ Полиуретановый обладают высокой прочностью, эластичностью, сопротивлением истиранию, маслобензостойкостыо. Стоек к кислороду и озону, его газонепроницаемость в 10 — 20 раз выше, чем у НК. Уретановые резины стойки к воздействию радиации. Резины на основе СКУ применяют для автомобильных шин, транспортерных лент, обкладки труб и желобов для транспортировки абразивных материалов, обуви и др.
На основе сложных полиэфиров вырабатывают СКУ-7, СКУ-8, СКУ-50; на основе простых полиэфиров - СКУ-ПФ, СКУ-ПФЛ.
4)Бутадиенстирольный (СКС) и бутадиенметилстирольные (СКМС) каучуки. Плотность каучука 919-920кг/м 3 , предел прочности 19-32МПа, относительное удлинение 500-800% Резины на основе бутадиенстирольных и бутадиенметилстирольных каучуков имеют высокое сопротивление истиранию. Резины из этих каучуков широко применяются в производстве конвейерных лент для обкладочных резин, различных РТИ. Выпускаются специальные марки морозостойких каучуков с пониженным содержанием стирола или метилстирола: СКС-Ю, СКМС-10 и СКС-10-1.
5)Бутадиеннитрильный (СКН). Резины на основе СКН обладают высокой прочностью, хорошо сопротивляются истиранию, но по эластичности уступают резинам на основе НК, превосходят их по стойкости к старению и действию разбавленных кислот и щелочей. Бутадиеннитрильный -основной тип маслобензостойкого каучука, широко применяемого при изготовлении очень большого ассортимента РТИ. Нитрильные каучуки маслостойки в степени, соответствующей содержанию в них акрилонитрила. Промышленность РТИ применяет следующие типы каучуков: СКН-18,СКН-18M, СКН-26, СКН-26М, СКН-40М, СКН-40Т, СКН-18РВДМ, СКН-26РВДМ. В настоящее время разработаны новые типы бутадиеннитрильных каучуков. К ним относятся: каучук с большим содержанием акрилонитрила, мягкого типа, получаемый с нетоксичным эмульгатором,- СКН-50СМ; модифицированный поливинилхлоридом - СКН-18ПВХ и др.
6)Этиленпропиленовые (СКЭП и СКЭПТ) сополимер этилена с пропиленом — представляет собой белую каучукообразную массу, которая обладает высокой прочностью и эластичностью, очень устойчива к тепловому старению, имеет хорошие диэлектрические свойства.
Кроме СКЭП выпускают тройные сополимеры СКЭПТ.
Каучуки обладают комплексом ценных свойств (тепло-, свето- и озоностойкостью), позволяющих использовать их в производстве резин как общего, так и специального назначения. Стойки к действию сильных окислителей (HNOз, Н2О2 и др.), применяются для уплотнительных изделий, диафрагм, гибких шлангов и т. д., не разрушаются при работе в атмосферных условиях в течение нескольких лет. Он используется для производства формовых и неформовых изделий, изоляции, герметиков для гидравлических систем.
Такой каучук изготавливается из дешевых сырьевых материалов и находит многочисленные применения в промышленности.
Этиленпропиленовый каучук имеет высокую воздухопроницаемость.
5)Бутадиеннитрильный (СКН). Резины на основе СКН обладают высокой прочностью, хорошо сопротивляются истиранию, но по эластичности уступают резинам на основе НК, превосходят их по стойкости к старению и действию разбавленных кислот и щелочей. Бутадиеннитрильный -основной тип маслобензостойкого каучука, широко применяемого при изготовлении очень большого ассортимента РТИ. Нитрильные каучуки маслостойки в степени, соответствующей содержанию в них акрилонитрила. Промышленность РТИ применяет следующие типы каучуков: СКН-18,СКН-18M, СКН-26, СКН-26М, СКН-40М, СКН-40Т, СКН-18РВДМ, СКН-26РВДМ. В настоящее время разработаны новые типы бутадиеннитрильных каучуков. К ним относятся: каучук с большим содержанием акрилонитрила, мягкого типа, получаемый с нетоксичным эмульгатором,- СКН-50СМ; модифицированный поливинилхлоридом - СКН-18ПВХ и др.
6)Этиленпропиленовые (СКЭП и СКЭПТ) сополимер этилена с пропиленом — представляет собой белую каучукообразную массу, которая обладает высокой прочностью и эластичностью, очень устойчива к тепловому старению, имеет хорошие диэлектрические свойства.
Кроме СКЭП выпускают тройные сополимеры СКЭПТ.
Каучуки обладают комплексом ценных свойств (тепло-, свето- и озоностойкостью), позволяющих использовать их в производстве резин как общего, так и специального назначения. Стойки к действию сильных окислителей (HNOз, Н2О2 и др.), применяются для уплотнительных изделий, диафрагм, гибких шлангов и т. д., не разрушаются при работе в атмосферных условиях в течение нескольких лет. Он используется для производства формовых и неформовых изделий, изоляции, герметиков для гидравлических систем.
Такой каучук изготавливается из дешевых сырьевых материалов и находит многочисленные применения в промышленности.
Этиленпропиленовый каучук имеет высокую воздухопроницаемость.
Каучуки и эластомеры (эластопласты).
1)Натуральный (НК) и синтетические изопреновые (СКИ). Плотность каучуков 910-920кг/м 3 , предел прочности 24-34МПа, относительное удлинение 600-800%. По эластическим свойствам марка СКИ-3 превосходит большую часть известных ныне СК и практически равноценна НК.
Кроме того, выпускают изопреновый каучук пищевой СКИ-Зп, СКИ-Зс-для цветных изделий, СКИ-ЗНТП - для светлых тонкостенных изделий и др. Изопреновые каучуки применяются в производстве конвейерных лент, формовых изделий, губчатых медицинских и других изделий.
2)Бутадиеновый (СКД). Плотность каучука 900-920кг/м 3 , предел прочности 13-16МПа, относительное удлинение 500-600% . Известны: СКД I и II групп, различающиеся по пластичности, а также СКДМ - маслонаполненный , с содержанием масла от 16 до 25 ч. (по массе), СКДП - содержащий 9-10 % пиперилена.
СКД обладает высокими морозостойкостью и сопротивлением истиранию. Резиновые смеси на основе СКД плохо перерабатываются экструзией и каландрованием. Для улучшения этих свойств, к СКД добавляют НК и СКИ-3.
Маслонаполненный СКД обладает лучшими пластоэластическими свойствами, а вулканизаты на его основе - комплексом улучшенных физико-механических свойств. Смеси на основе СКД характеризуются низкой клейкостью. СКД уступает НК по прочности вулканизатов.
3)Бутилкаучук (БК) обладает стойкостью к кислороду, озону и другим химическим реагентам.
Каучук обладает высоким сопротивлением истиранию и высокими диэлектрическими характеристиками. По температуростойкости уступает другим резинам.
Основным физическим свойством БК является необычно высокая газо- и влагонепроницаемость. Камера шины из этого материала удерживает воздух в 10 раз дольше, чем камера из натурального каучука. Бутилкаучук широко применяют как каучук общего и специального назначения. В производстве РТИ из БК изготовляют паропроводные рукава, конвейерные ленты и резиновые технические детали, от которых требуются повышенные тепло-, паро-, озоно- и химическая стойкость. БК применяют для изготовления электроизоляционных резин, различных прорезиненных тканей и обкладки химической аппаратуры. Резины из БК используются в деталях доильных аппаратов и в пищевой промышленности.
Каучук кристаллизующийся, что позволяет получать материал с высокой прочностью (хотя эластические свойства низкие).
Кроме того, выпускают изопреновый каучук пищевой СКИ-Зп, СКИ-Зс-для цветных изделий, СКИ-ЗНТП - для светлых тонкостенных изделий и др. Изопреновые каучуки применяются в производстве конвейерных лент, формовых изделий, губчатых медицинских и других изделий.
2)Бутадиеновый (СКД). Плотность каучука 900-920кг/м 3 , предел прочности 13-16МПа, относительное удлинение 500-600% . Известны: СКД I и II групп, различающиеся по пластичности, а также СКДМ - маслонаполненный , с содержанием масла от 16 до 25 ч. (по массе), СКДП - содержащий 9-10 % пиперилена.
СКД обладает высокими морозостойкостью и сопротивлением истиранию. Резиновые смеси на основе СКД плохо перерабатываются экструзией и каландрованием. Для улучшения этих свойств, к СКД добавляют НК и СКИ-3.
Маслонаполненный СКД обладает лучшими пластоэластическими свойствами, а вулканизаты на его основе - комплексом улучшенных физико-механических свойств. Смеси на основе СКД характеризуются низкой клейкостью. СКД уступает НК по прочности вулканизатов.
3)Бутилкаучук (БК) обладает стойкостью к кислороду, озону и другим химическим реагентам.
Каучук обладает высоким сопротивлением истиранию и высокими диэлектрическими характеристиками. По температуростойкости уступает другим резинам.
Основным физическим свойством БК является необычно высокая газо- и влагонепроницаемость. Камера шины из этого материала удерживает воздух в 10 раз дольше, чем камера из натурального каучука. Бутилкаучук широко применяют как каучук общего и специального назначения. В производстве РТИ из БК изготовляют паропроводные рукава, конвейерные ленты и резиновые технические детали, от которых требуются повышенные тепло-, паро-, озоно- и химическая стойкость. БК применяют для изготовления электроизоляционных резин, различных прорезиненных тканей и обкладки химической аппаратуры. Резины из БК используются в деталях доильных аппаратов и в пищевой промышленности.
Каучук кристаллизующийся, что позволяет получать материал с высокой прочностью (хотя эластические свойства низкие).
Полиуретановые эластомеры горячего отверждения
Фирма BayerMaterialScience разработала новую линейку преполимеров марки Baytec MAX для производства полиуретановых эластомеров горячего отверждения. После нескольких лет застоя в области научного исследования эластомеров горячего отверждения переработчики получили принципиально новую интересную серию продуктов, открывающую им новые возможности. Благодаря реакции взаимодействия с аминами эти продукты обладают замечательными свойствами эластомеров, широким диапазоном переработки, а также безопасностью, поскольку в них не содержится толуилендиизоцианат (ТДИ).
Полиуретановые эластомеры горячего отверждения были разработаны более 50-и лет назад, а сегодня они применяются почти во всех отраслях промышленности. Высокая прочность материала, низкая степень износа, высокая эластичность в широком диапазоне твёрдостей – вот характерные свойства, отличающие полиуретановые эластомеры от сравнительно давно применяемых классических резиновых эластомеров. Полиуретановые литьевые эластомеры получаются полиаддитивным методом из диизоцианатов и полиолов.
Этот метод неоднократно описан.
Применяются, главным образом, такие изоцианаты, как метилендифенилдиизоцианат (МДИ) и ТДИ, а в качестве полиольного компонента используются сложные и простые полиэфиры. Вначале из изоцианатов получают преполимеры, а затем проводят реакцию с низкомолекулярными диолами или аминами, в результате чего образуются полиуретановые эластомеры. Для увеличения реакционной способности ТДИ-преполимеров проводят реакцию с ароматическими диаминами. В результате получаются полимочевинные связи, которым эластомеры обязаны своими свойствами. Реакционная способность МДИ-преполимеров, напротив, так высока, что возможность проведения реакции с алифатическими или ароматическими диаминами в условиях производства затруднительна. Эти компоненты реагируют в течение нескольких секунд, поэтому такие реакционные смеси не пригодны для способа заливки в форму при низком давлении. Поэтому для преобразования МДИ-преполимеров используют сшиватели на основе гликолей, как правило, бутандиол.
Различные диапазоны переработки
У МДИ-преполимеров - сравнительно узкий диапазон переработки. Поэтому необходимо очень точно придерживаться рекомендованных параметров производственного процесса, таких как температура продукта, настройки литьевой машины, температура пресс-форм, так как они сильно влияют на результат.
В зависимости от веса и геометрии детали могут формироваться различные температуры по поверхности детали. У небольших деталей, имеющих тонкие стенки, а также у деталей с низкой жёсткостью, реакция может идти быстрее. Таким образом благодаря более высокой температуре реакционной массы или пресс-формы обеспечивается экономичное производство. При получении крупных и толстостенных или чрезвычайно жёстких деталей выделяется много тепла благодаря экзотермической реакции. Скорость реакции здесь очень высокая, однако из-за высоких температур в формованной детали наблюдаются усадка, образование трещин и пр. Поэтому при производстве крупных деталей понижают температуру реакционной массы и/или пресс-формы. Настройки параметров рабочего процесса для детали весом 500 граммов кардинально отличаются от настроек для деталей с другим весом, например, 2 кг. Узкий диапазон переработки даже частично визуально заметен на готовом продукте: поверхность извлечённой из формы детали матовая, в худшем случае выглядит неоднородной.
В отличие от этого, сшивание ТДИ-преполимеров аминами обеспечивает очень широкий диапазон переработки: различия в настройках рабочих параметров, в температуре форм, температуре или соотношении смешивания, вплоть до неполного смешивания не так велики и не всегда отражаются на внешнем виде готовой детали. Производитель не может недооценить это преимущество. Готовые эластомерные детали из ТДИ-преполимеров, прошитых аминами, имеют блестящую чистую поверхность. Поэтому системы на основе ТДИ-преполимеров, сшиваемые аминами, считаются простыми в переработке (easy-to-process-systems).
Высокое давление пара при переработке ТДИ-преполимеров
При переработке ТДИ-преполимеров относительно высокое давление паров содержащегося в преполимере мономера ТДИ может оказывать нежелательное воздействие. Даже относительно низкое содержание ТДИ (всего 2-5%) может вызвать проблемы при температурах переработки 80-100 °C. Это давно известно переработчикам ТДИ-преполимеров. Именно поэтому были разработаны ТДИ-преполимеры с очень низким содержанием – менее 0,1% - свободного мономерного ТДИ, так называемые ТДИ-преполимеры ’’low-free’’. Такое низкое содержание мономеров получается при проведении химической реакции или при испарении в тонком слое. Однако, существуют ограничения: с одной стороны, для получения высокого уровня свойств необходимо определённое содержание мономерных изоцианатов, с другой стороны, даже при переработке low-free-ТДИ-преполимеров при определённых обстоятельствах существует опасность, что максимальная концентрация паров ТДИ на рабочем месте может быть превышена. Однако уменьшение показателя ПДК мономеров не решает до конца проблему загазованности, при условии высоких требований к свойствам и безопасности условий труда.
ТДИ-преполимеры, сшиваемые аминами, открывают новые возможности
При сшивании аминами получение полимочевинных эластомеров на основе МДИ - наиболее интересная альтернатива. Baytec® MAX – так называется новая серия продуктов фирмы Bayer MaterialScience, состоящая из различных новых преполимеров на базе сложных или простых полиэфиров. В основу этой разработки лёг новый специальный тип полиизоцианата, обеспечивающий сшивание преполимеров ароматическими аминами с образованием поликарбамидных эластомеров.
Условия переработки такие же, как для традиционных преполимеров: дегазация при при температуре около 90 °C; смешивание в литьевой машине и заливка в форму способом горячего отверждения, нагревание форм до температуры около 100-110 °C. После извлечения отливки проводят пост-отверждение при температуре 110 °C в течение 24 часов. Поскольку вязкость преполимеров очень низкая, переработка возможна при сравнительно низких температурах. Реакционная способность новых МДИ-преполимеров на базе простых и сложных полиэфиров низка, что допускает возможность изготовления средних и крупных эластомерных деталей. Механические свойства таких деталей очень хороши, в особенности же можно выделить отличные показатели сопротивления на раздир и истирание. Условия переработки те же, что и для переработки ТДИ-преполимеров.
Влияние свободного мономера на свойства эластомера
Содержащийся в преполимере свободный изоцианатный мономер при сшивании ароматическими диаминами способствует повышенному образованию жёстких сегментов. Эти жёсткие сегменты соединяются между собой посредством водородных связей, образуя микрокристаллические зоны, которые усиленно влияют на свойства эластомеров.
Ясно, что удаление свободного ТДИ-мономера приводит к снижению уровня свойств эластомера. Уменьшается твёрдость по Шору, но особенно заметен этот эффект на сопротивлении раздиру. В отличие от этого, позитивное влияние МДИ-мономера в продукте Desmodur® VPPU MS40TF01 отражается на всём спектре свойств эластомера. Снижение содержания мономеров в ТДИ-преполимерах приводит к уменьшенной концентрации укрепляющих твёрдых сегментов и, следовательно, к снижению уровня свойств.
Влияние процентного содержания NCO
Вязкость различных преполимеров Baytec® MAX аналогична традиционным преполимерам понижается с увеличением процентного содержания NCO, при этом растёт их реакционная способность. Время извлечения из форм зависит от геометрии деталей и не одинакова для всех деталей. Приведенные параметры справедливы для пластины квадратной формы размером 25 x 25 см и толщиной около 0,5 см. Однако, эти значения не верны при получении деталей другой геометрии.
Возможности различных сшивающих веществ
Наряду с продуктом Baytec® XL 1604 в качестве компонентов реакции с преполимерами Baytec® MAX могут быть использованы и другие имеющиеся на рынке сшиватели, как например, MХДЭA, MOCA и Baytec® XL 1705.
Из-за разного процентного содержания аминов различные сшиватели требуют дифференцированного соотношения смешивания с преполимерами. Поскольку у некоторых сшивающих веществ высокая температура плавления - выше 90 °C, для переработки необходимы литьевые машины с двухсторонним нагревом. Продукт Baytec® XL 1604 допускает максимально комфортное время переработки. Преполимеры, содержащие 4% сшивающего вещества, отлично подходят для производства крупных деталей. Вследствие низкой токсичности продукт Baytec® XL 1604 отлично подходит для заливки реакционной смеси вручную. Композиция этого сшивателя с новыми, свободными от ТДИ преполимерами Baytec® MAX, плюс умелые действия и соблюдение условий техники безопасности на рабочем месте открывает очень интересные возможности и имеет большие перспективы.
Сшивающее вещество MХДЭA придаёт жёсткость и даёт хорошие свойства конечному продукту. Но цикл переработки короток, поэтому производство крупногабаритных деталей из Baytec® MAX и MХДЭA затруднительно. Переработка преполимеров MOCA в настоящее время широко распространена. Однако вследствие токсичных свойств сшивателя MOCA в Евросоюзе действует предписание о его замене на альтернативный продукт. Законодательство Евросоюза классифицирует MOCA как «канцероген категории 2, способный вызвать рак» ("Carcinogen Cat.2; R45 Kann Krebs erzeugen"). Если нет возможности отказаться от применения MOCA, то переработка должна производиться на герметичных литьевых машинах. Но в целом сшивание преполимеров Baytec® MAX продуктом MOCA возможно. Условия переработки Desmodur® VPPU MS40TF01 с различными сшивателями представлены в таблице 5 Если сравнить реакционную способность различных аминов, то получается: МХДЭА > MOCA> Baytec® XL 1604 Параллельно можно использовать и другие амины, например, Baytec®XL 1705 и т.п. Но они ещё активнее, чем МХДЭА.
Сравнение эластомеров Baytec® MAX с традиционными МДИ-эластомерами
Для деталей, подвергающихся большим нагрузкам, наряду с высокой прочностью на разрыв и на истирание важно также поведение материала в различных температурах. Можно предположить, что у новых эластомеров Baytec® MAX - аналогичная термостойкость, как и у ТДИ-эластомеров. Эти предположения подтверждаются при испытании изделий на изгиб. На графике зависимости модуля изгиба от температуры (рисунок 1) мы видим чётко выраженное плато в диапазоне температур от +10 °C до +140 °C. Лишь потом композиция начинает заметно размягчаться. На практике это означает, что способность эластомера к деформации остаётся постоянной в широком диапазоне температур, что очень важно для расчетов конструктора. Но показатель модуля изгиба во время испытания на старение не несёт информации о поведении материалов, так как измерения при проведении этих опытов имеют жёсткие временные ограничения. Температурный порог при длительном тепловом воздействии не должен превышать 80 °C. По сути эластомеры Baytec® MAX ведут себя так же, как и композиции на основе ТДИ. Одновременно с модулем изгиба определяют тангенс угла механических потерь δ. Эластомеры Baytec®MAX обладают амортизационной способностью, такой же, как и у известных эластомеров на основе ТДИ.
При прямом сравнении новых продуктов с традиционными эластомерами мы обнаруживаем интересное отличие: кривая модуля кручения традиционных МДИ-преполимеров имеет характерное для МДИ падение модуля при повышении температуры – материал с повышением температуры становится всё мягче. Такое поведение, характерное для эластомеров на основе МДИ, выгодно используется для изготовления термопластичных полиуретанов. Недостатком является ограниченная термостойкость материала. Профиль свойств эластомеров на основе Baytec® MAX аналогичен свойствам эластомерам на основе ТДИ и в отношении термостойкости и динамической нагрузки.
Заключение
Полиуретановые эластомеры горячего отверждения завоёвывают новые позиции на рынке. Износостойкий материал находит применение практически в любой отрасли. Никакой другой сектор полиуретанов не предлагает такое разнообразие продуктов и областей их применения. Новая серия продуктов Baytec® MAX впервые предоставляет переработчикам МДИ-преполимеры с аналогичными свойствами при переработке, что и ТДИ-преполимеры. Реакция сшивания аминами проходит за то же время, как и у стандартных ТДИ-преполимеров. Получаются эластомеры с отличными свойствами, частично превосходящими свойства традиционных продуктов. Эти преимущества, а также благоприятные условия работы, открывают многообещающие перспективы МДИ-преполимерам.
Петер Плате, Bayer MaterialScience AG, Леверкузен
Журнал «Полиуретановые технологии»
Полиуретановые эластомеры горячего отверждения были разработаны более 50-и лет назад, а сегодня они применяются почти во всех отраслях промышленности. Высокая прочность материала, низкая степень износа, высокая эластичность в широком диапазоне твёрдостей – вот характерные свойства, отличающие полиуретановые эластомеры от сравнительно давно применяемых классических резиновых эластомеров. Полиуретановые литьевые эластомеры получаются полиаддитивным методом из диизоцианатов и полиолов.
Этот метод неоднократно описан.
Применяются, главным образом, такие изоцианаты, как метилендифенилдиизоцианат (МДИ) и ТДИ, а в качестве полиольного компонента используются сложные и простые полиэфиры. Вначале из изоцианатов получают преполимеры, а затем проводят реакцию с низкомолекулярными диолами или аминами, в результате чего образуются полиуретановые эластомеры. Для увеличения реакционной способности ТДИ-преполимеров проводят реакцию с ароматическими диаминами. В результате получаются полимочевинные связи, которым эластомеры обязаны своими свойствами. Реакционная способность МДИ-преполимеров, напротив, так высока, что возможность проведения реакции с алифатическими или ароматическими диаминами в условиях производства затруднительна. Эти компоненты реагируют в течение нескольких секунд, поэтому такие реакционные смеси не пригодны для способа заливки в форму при низком давлении. Поэтому для преобразования МДИ-преполимеров используют сшиватели на основе гликолей, как правило, бутандиол.
Различные диапазоны переработки
У МДИ-преполимеров - сравнительно узкий диапазон переработки. Поэтому необходимо очень точно придерживаться рекомендованных параметров производственного процесса, таких как температура продукта, настройки литьевой машины, температура пресс-форм, так как они сильно влияют на результат.
В зависимости от веса и геометрии детали могут формироваться различные температуры по поверхности детали. У небольших деталей, имеющих тонкие стенки, а также у деталей с низкой жёсткостью, реакция может идти быстрее. Таким образом благодаря более высокой температуре реакционной массы или пресс-формы обеспечивается экономичное производство. При получении крупных и толстостенных или чрезвычайно жёстких деталей выделяется много тепла благодаря экзотермической реакции. Скорость реакции здесь очень высокая, однако из-за высоких температур в формованной детали наблюдаются усадка, образование трещин и пр. Поэтому при производстве крупных деталей понижают температуру реакционной массы и/или пресс-формы. Настройки параметров рабочего процесса для детали весом 500 граммов кардинально отличаются от настроек для деталей с другим весом, например, 2 кг. Узкий диапазон переработки даже частично визуально заметен на готовом продукте: поверхность извлечённой из формы детали матовая, в худшем случае выглядит неоднородной.
В отличие от этого, сшивание ТДИ-преполимеров аминами обеспечивает очень широкий диапазон переработки: различия в настройках рабочих параметров, в температуре форм, температуре или соотношении смешивания, вплоть до неполного смешивания не так велики и не всегда отражаются на внешнем виде готовой детали. Производитель не может недооценить это преимущество. Готовые эластомерные детали из ТДИ-преполимеров, прошитых аминами, имеют блестящую чистую поверхность. Поэтому системы на основе ТДИ-преполимеров, сшиваемые аминами, считаются простыми в переработке (easy-to-process-systems).
Высокое давление пара при переработке ТДИ-преполимеров
При переработке ТДИ-преполимеров относительно высокое давление паров содержащегося в преполимере мономера ТДИ может оказывать нежелательное воздействие. Даже относительно низкое содержание ТДИ (всего 2-5%) может вызвать проблемы при температурах переработки 80-100 °C. Это давно известно переработчикам ТДИ-преполимеров. Именно поэтому были разработаны ТДИ-преполимеры с очень низким содержанием – менее 0,1% - свободного мономерного ТДИ, так называемые ТДИ-преполимеры ’’low-free’’. Такое низкое содержание мономеров получается при проведении химической реакции или при испарении в тонком слое. Однако, существуют ограничения: с одной стороны, для получения высокого уровня свойств необходимо определённое содержание мономерных изоцианатов, с другой стороны, даже при переработке low-free-ТДИ-преполимеров при определённых обстоятельствах существует опасность, что максимальная концентрация паров ТДИ на рабочем месте может быть превышена. Однако уменьшение показателя ПДК мономеров не решает до конца проблему загазованности, при условии высоких требований к свойствам и безопасности условий труда.
ТДИ-преполимеры, сшиваемые аминами, открывают новые возможности
При сшивании аминами получение полимочевинных эластомеров на основе МДИ - наиболее интересная альтернатива. Baytec® MAX – так называется новая серия продуктов фирмы Bayer MaterialScience, состоящая из различных новых преполимеров на базе сложных или простых полиэфиров. В основу этой разработки лёг новый специальный тип полиизоцианата, обеспечивающий сшивание преполимеров ароматическими аминами с образованием поликарбамидных эластомеров.
Условия переработки такие же, как для традиционных преполимеров: дегазация при при температуре около 90 °C; смешивание в литьевой машине и заливка в форму способом горячего отверждения, нагревание форм до температуры около 100-110 °C. После извлечения отливки проводят пост-отверждение при температуре 110 °C в течение 24 часов. Поскольку вязкость преполимеров очень низкая, переработка возможна при сравнительно низких температурах. Реакционная способность новых МДИ-преполимеров на базе простых и сложных полиэфиров низка, что допускает возможность изготовления средних и крупных эластомерных деталей. Механические свойства таких деталей очень хороши, в особенности же можно выделить отличные показатели сопротивления на раздир и истирание. Условия переработки те же, что и для переработки ТДИ-преполимеров.
Влияние свободного мономера на свойства эластомера
Содержащийся в преполимере свободный изоцианатный мономер при сшивании ароматическими диаминами способствует повышенному образованию жёстких сегментов. Эти жёсткие сегменты соединяются между собой посредством водородных связей, образуя микрокристаллические зоны, которые усиленно влияют на свойства эластомеров.
Ясно, что удаление свободного ТДИ-мономера приводит к снижению уровня свойств эластомера. Уменьшается твёрдость по Шору, но особенно заметен этот эффект на сопротивлении раздиру. В отличие от этого, позитивное влияние МДИ-мономера в продукте Desmodur® VPPU MS40TF01 отражается на всём спектре свойств эластомера. Снижение содержания мономеров в ТДИ-преполимерах приводит к уменьшенной концентрации укрепляющих твёрдых сегментов и, следовательно, к снижению уровня свойств.
Влияние процентного содержания NCO
Вязкость различных преполимеров Baytec® MAX аналогична традиционным преполимерам понижается с увеличением процентного содержания NCO, при этом растёт их реакционная способность. Время извлечения из форм зависит от геометрии деталей и не одинакова для всех деталей. Приведенные параметры справедливы для пластины квадратной формы размером 25 x 25 см и толщиной около 0,5 см. Однако, эти значения не верны при получении деталей другой геометрии.
Возможности различных сшивающих веществ
Наряду с продуктом Baytec® XL 1604 в качестве компонентов реакции с преполимерами Baytec® MAX могут быть использованы и другие имеющиеся на рынке сшиватели, как например, MХДЭA, MOCA и Baytec® XL 1705.
Из-за разного процентного содержания аминов различные сшиватели требуют дифференцированного соотношения смешивания с преполимерами. Поскольку у некоторых сшивающих веществ высокая температура плавления - выше 90 °C, для переработки необходимы литьевые машины с двухсторонним нагревом. Продукт Baytec® XL 1604 допускает максимально комфортное время переработки. Преполимеры, содержащие 4% сшивающего вещества, отлично подходят для производства крупных деталей. Вследствие низкой токсичности продукт Baytec® XL 1604 отлично подходит для заливки реакционной смеси вручную. Композиция этого сшивателя с новыми, свободными от ТДИ преполимерами Baytec® MAX, плюс умелые действия и соблюдение условий техники безопасности на рабочем месте открывает очень интересные возможности и имеет большие перспективы.
Сшивающее вещество MХДЭA придаёт жёсткость и даёт хорошие свойства конечному продукту. Но цикл переработки короток, поэтому производство крупногабаритных деталей из Baytec® MAX и MХДЭA затруднительно. Переработка преполимеров MOCA в настоящее время широко распространена. Однако вследствие токсичных свойств сшивателя MOCA в Евросоюзе действует предписание о его замене на альтернативный продукт. Законодательство Евросоюза классифицирует MOCA как «канцероген категории 2, способный вызвать рак» ("Carcinogen Cat.2; R45 Kann Krebs erzeugen"). Если нет возможности отказаться от применения MOCA, то переработка должна производиться на герметичных литьевых машинах. Но в целом сшивание преполимеров Baytec® MAX продуктом MOCA возможно. Условия переработки Desmodur® VPPU MS40TF01 с различными сшивателями представлены в таблице 5 Если сравнить реакционную способность различных аминов, то получается: МХДЭА > MOCA> Baytec® XL 1604 Параллельно можно использовать и другие амины, например, Baytec®XL 1705 и т.п. Но они ещё активнее, чем МХДЭА.
Сравнение эластомеров Baytec® MAX с традиционными МДИ-эластомерами
Для деталей, подвергающихся большим нагрузкам, наряду с высокой прочностью на разрыв и на истирание важно также поведение материала в различных температурах. Можно предположить, что у новых эластомеров Baytec® MAX - аналогичная термостойкость, как и у ТДИ-эластомеров. Эти предположения подтверждаются при испытании изделий на изгиб. На графике зависимости модуля изгиба от температуры (рисунок 1) мы видим чётко выраженное плато в диапазоне температур от +10 °C до +140 °C. Лишь потом композиция начинает заметно размягчаться. На практике это означает, что способность эластомера к деформации остаётся постоянной в широком диапазоне температур, что очень важно для расчетов конструктора. Но показатель модуля изгиба во время испытания на старение не несёт информации о поведении материалов, так как измерения при проведении этих опытов имеют жёсткие временные ограничения. Температурный порог при длительном тепловом воздействии не должен превышать 80 °C. По сути эластомеры Baytec® MAX ведут себя так же, как и композиции на основе ТДИ. Одновременно с модулем изгиба определяют тангенс угла механических потерь δ. Эластомеры Baytec®MAX обладают амортизационной способностью, такой же, как и у известных эластомеров на основе ТДИ.
При прямом сравнении новых продуктов с традиционными эластомерами мы обнаруживаем интересное отличие: кривая модуля кручения традиционных МДИ-преполимеров имеет характерное для МДИ падение модуля при повышении температуры – материал с повышением температуры становится всё мягче. Такое поведение, характерное для эластомеров на основе МДИ, выгодно используется для изготовления термопластичных полиуретанов. Недостатком является ограниченная термостойкость материала. Профиль свойств эластомеров на основе Baytec® MAX аналогичен свойствам эластомерам на основе ТДИ и в отношении термостойкости и динамической нагрузки.
Заключение
Полиуретановые эластомеры горячего отверждения завоёвывают новые позиции на рынке. Износостойкий материал находит применение практически в любой отрасли. Никакой другой сектор полиуретанов не предлагает такое разнообразие продуктов и областей их применения. Новая серия продуктов Baytec® MAX впервые предоставляет переработчикам МДИ-преполимеры с аналогичными свойствами при переработке, что и ТДИ-преполимеры. Реакция сшивания аминами проходит за то же время, как и у стандартных ТДИ-преполимеров. Получаются эластомеры с отличными свойствами, частично превосходящими свойства традиционных продуктов. Эти преимущества, а также благоприятные условия работы, открывают многообещающие перспективы МДИ-преполимерам.
Петер Плате, Bayer MaterialScience AG, Леверкузен
Журнал «Полиуретановые технологии»
вторник, 9 июня 2009 г.
СВОЙСТВА СИЛИКОНОВОЙ РЕЗИНЫ
Устойчивость к экстремальным температурам
Силиконовая резина сохраняет свои свойства практически неограниченное время при температурах от -50°C до +180°C.
Её можно использовать при температурах, близких к +250°C в течение нескольких сотен часов без появления хрупкости.
Особо термостойкие типы силиконовой резины имеют достаточно долгий срок службы при температуре выше +200°C.
Точно также особые сорта применимы при температурах до -100°C.
Учитывая её хорошие электроизоляционные свойства, силиконовую резину можно отнести к категории теплостойкости H.
Зависимость свойств от температуры
Как и у всех силиконов, большинство свойств силиконовой резины зависят от температуры в меньшей степени, чем у органических материалов. Благодаря этому силиконовую резину можно с успехом использовать при более высоких и более низких температурах. К таким свойствам относятся, например, сохранение формы, эластичность, упругость, прочность, жёсткость и предельное удлинение. Среди электрических характеристик, которые также в меньшей степени зависят от температуры, следует назвать пробивную прочность, диэлектрические показатели, объёмное сопротивление.
Электрические свойства
Силиконовая резина при комнатной температуре обладает отличными изоляционными свойствами. Как уже отмечалось, эти свойства зависят от температуры лишь в малой степени. Поэтому силиконовая резина при температурах выше +100°C превышает по своим изоляционным показателям все традиционные эластомеры.
Следует также отметить, что при хранении в воде отмечаются лишь ничтожные изменения электрических свойств.
При сгорании изоляции из силиконовой резины остаётся непроводящий слой SiO2, благодаря чему обеспечивается более высокая защита электрических приборов и установок при нежелательных перегрузках.
Основные электрические характеристики
Диэлектрическая прочность 18-20 кВ/мм
Объемное сопротивление 10*1014 Ом*см
Диэлектрическая проницаемость (25°C, 50 Гц) 2,7 - 3,3
Химическая стойкость
Силиконовая резина устойчива к растворам солей, кипящей воде, спиртам, фенолам, различным минеральным маслам, слабым кислотам и щелочам, а также к перекиси водорода. В определённых условиях при контакте с алифатическими углеводородами наблюдается сильное набухание силиконовой резины, но после их испарения к ней возвращаются первоначальные механические свойства, так как она не содержит экстрагируемых составных частей.
Физиологическое воздействие
Силиконовая резина не токсична, если она обработана по всем правилам. Поэтому она является идеальным материалом для медицинской техники и пищевой промышленности. Однако некоторые вулканизирующие средства могут оказывать на неё неблагоприятное воздействие. Эти средства вулканизации и продукты их распада устраняются путём достаточно длительного воздействия высоких температур.
Устойчивость к атмосферным воздействиям и озону
По своей устойчивости к атмосферному воздействию и озону силиконовая резина превышает все органические каучуки.
Свойства силиконовой резины в отличие от натурального каучука не меняются под воздействием света и воздуха в нормальных температурных диапазонах. Дождь, снег, морская вода также практически не оказывают воздействия на свойства силиконовой резины. Поэтому её можно считать устойчивой к атмосферным воздействиям.
Она устойчива даже к озону, благодаря чему приобретает особенно важное значение для электротехнической промышленности. Кроме того, силиконовая резина устойчива к таким явлениям, как электрическая корона и дуга.
Антиадгезионные свойства
Большинство сортов силиконовой резины обладает плохой адгезией к поверхностям различных материалов. Поэтому их можно использовать как материалы для изготовления форм, покрытий для транспортёров, по которым перемещаются липкие детали, покрытий валов в текстильной промышленности и искусственных материалов. Из-за своих антиадгезионных свойств силиконовая резина с трудом совмещается с другими материалами. Для достижения достаточной прочности сцепления необходимо использовать специальные клеи.
Теплотехнические свойства
Теплопроводность силиконовой резины составляет ~4*10-4 кал/см.град.с (измерена при температуре +80°C).
Коэффициент линейного расширения составляет ~2*10-4 град.-1 в пределах температур от 0 до +150°C. Оба эти показателя зависят от типа и количества наполнителя.
Силиконовая резина сохраняет свои свойства практически неограниченное время при температурах от -50°C до +180°C.
Её можно использовать при температурах, близких к +250°C в течение нескольких сотен часов без появления хрупкости.
Особо термостойкие типы силиконовой резины имеют достаточно долгий срок службы при температуре выше +200°C.
Точно также особые сорта применимы при температурах до -100°C.
Учитывая её хорошие электроизоляционные свойства, силиконовую резину можно отнести к категории теплостойкости H.
Зависимость свойств от температуры
Как и у всех силиконов, большинство свойств силиконовой резины зависят от температуры в меньшей степени, чем у органических материалов. Благодаря этому силиконовую резину можно с успехом использовать при более высоких и более низких температурах. К таким свойствам относятся, например, сохранение формы, эластичность, упругость, прочность, жёсткость и предельное удлинение. Среди электрических характеристик, которые также в меньшей степени зависят от температуры, следует назвать пробивную прочность, диэлектрические показатели, объёмное сопротивление.
Электрические свойства
Силиконовая резина при комнатной температуре обладает отличными изоляционными свойствами. Как уже отмечалось, эти свойства зависят от температуры лишь в малой степени. Поэтому силиконовая резина при температурах выше +100°C превышает по своим изоляционным показателям все традиционные эластомеры.
Следует также отметить, что при хранении в воде отмечаются лишь ничтожные изменения электрических свойств.
При сгорании изоляции из силиконовой резины остаётся непроводящий слой SiO2, благодаря чему обеспечивается более высокая защита электрических приборов и установок при нежелательных перегрузках.
Основные электрические характеристики
Диэлектрическая прочность 18-20 кВ/мм
Объемное сопротивление 10*1014 Ом*см
Диэлектрическая проницаемость (25°C, 50 Гц) 2,7 - 3,3
Химическая стойкость
Силиконовая резина устойчива к растворам солей, кипящей воде, спиртам, фенолам, различным минеральным маслам, слабым кислотам и щелочам, а также к перекиси водорода. В определённых условиях при контакте с алифатическими углеводородами наблюдается сильное набухание силиконовой резины, но после их испарения к ней возвращаются первоначальные механические свойства, так как она не содержит экстрагируемых составных частей.
Физиологическое воздействие
Силиконовая резина не токсична, если она обработана по всем правилам. Поэтому она является идеальным материалом для медицинской техники и пищевой промышленности. Однако некоторые вулканизирующие средства могут оказывать на неё неблагоприятное воздействие. Эти средства вулканизации и продукты их распада устраняются путём достаточно длительного воздействия высоких температур.
Устойчивость к атмосферным воздействиям и озону
По своей устойчивости к атмосферному воздействию и озону силиконовая резина превышает все органические каучуки.
Свойства силиконовой резины в отличие от натурального каучука не меняются под воздействием света и воздуха в нормальных температурных диапазонах. Дождь, снег, морская вода также практически не оказывают воздействия на свойства силиконовой резины. Поэтому её можно считать устойчивой к атмосферным воздействиям.
Она устойчива даже к озону, благодаря чему приобретает особенно важное значение для электротехнической промышленности. Кроме того, силиконовая резина устойчива к таким явлениям, как электрическая корона и дуга.
Антиадгезионные свойства
Большинство сортов силиконовой резины обладает плохой адгезией к поверхностям различных материалов. Поэтому их можно использовать как материалы для изготовления форм, покрытий для транспортёров, по которым перемещаются липкие детали, покрытий валов в текстильной промышленности и искусственных материалов. Из-за своих антиадгезионных свойств силиконовая резина с трудом совмещается с другими материалами. Для достижения достаточной прочности сцепления необходимо использовать специальные клеи.
Теплотехнические свойства
Теплопроводность силиконовой резины составляет ~4*10-4 кал/см.град.с (измерена при температуре +80°C).
Коэффициент линейного расширения составляет ~2*10-4 град.-1 в пределах температур от 0 до +150°C. Оба эти показателя зависят от типа и количества наполнителя.
Техпластина
Техпластина вакуумная атмосферомаслостойкая (АМС), маслобензостойкая (МБС), и тепломорозокислотощелочестойкая (ТМКЩ)предназначена для изготовления резинотехнических изделий, служащих для уплотнения неподвижных соединений, работающих под давлением до 0,1 Мпа, предотвращения трения между металлическими поверхностями, для восприятия одиночных ударных нагрузок, а также в качестве прокладок, настилов и других неуплотнительных соединений. Все техпластины - неформовые (изготавливаются методом вулканизации в автоклаве, а также на вулканизаторе непрерывного действия).
Марки выпускаемых техпластин:
ТМКЩ - тепломорозокислотощелочестойкая;
АМС - атмосферомаслостойкая (ограниченно озоностойкая);
МБС - маспобензостойкая.
Типы техпластин:
I - резиновая пластина (марки ТМКЩ, АМС, МБС);
II - резинотканевая пластина (с одним или несколькими тканевыми слоями) - только пластины марки ТМКЩ-С, ТМКЩ-С1.
По степени твердости выпускаются пластины: мягкой (М и М1) твердости и средней (С и С1) твердости.
Марки выпускаемых техпластин:
ТМКЩ - тепломорозокислотощелочестойкая;
АМС - атмосферомаслостойкая (ограниченно озоностойкая);
МБС - маспобензостойкая.
Типы техпластин:
I - резиновая пластина (марки ТМКЩ, АМС, МБС);
II - резинотканевая пластина (с одним или несколькими тканевыми слоями) - только пластины марки ТМКЩ-С, ТМКЩ-С1.
По степени твердости выпускаются пластины: мягкой (М и М1) твердости и средней (С и С1) твердости.
понедельник, 8 июня 2009 г.
Применение силиконовых резин.
Возможности применения силиконовой резины чрезвычайно разнообразны и охватывают все отрасли промышленности.
В электротехнике её используют как изоляционный материал, особенно при высоких температурах, а также в тех случаях, которые связаны с воздействием влаги и озона.
Из силиконовой резины делают оболочку для кабеля и провода. В других случаях из неё изготовляют изоляционные трубы, либо без укрепляющих добавок, либо совместно со стеклонаполнителем.
Ленты, изготовленные из стеклонитей или полиэфирного волокна и покрытые силиконовой резиной, в вулканизированной форме, служат как изоляционный материал, который накручивается внахлёст на электрический провод.
Силиконовая резина используется в качестве замазки для нагревательных элементов, устанавливаемых для подпольного отопления террас, передающих установок, наружных лестниц.
Следует отметить также токопроводящие силиконовые резиновые смеси, используемые для изготовления специальных кабелей, например, в автомобилестроении, а также клавишных переключателей в электронных усилителях, использующих изменение сопротивления от давления, высокие токи включения в которых могут создавать акустические помехи.
Наконец, силиконовая резина играет большую роль в области электротехнического машиностроения, например, там, где действуют высокие температуры: в рольгангах, в тяговых электродвигателях, в крановых электродвигателях. Кроме того, из силиконовой резины можно изготовлять покрытия с подогревом, при этом провод сопротивления вводится в резину.
Особую роль силиконовая резина играет в самолёто- и судостроении. Именно в этих отраслях требуется её работоспособность при высоких и низких температурах. Поэтому силиконовой резине здесь отдаётся предпочтение при изготовлении уплотнителей и изоляции.
В машиностроении силиконовая резина играет большую роль как уплотнительный материал. Широкое распространение нашли мембранные вентили и диафрагмы из силиконовой резины.
Большое значение имеют, прежде всего, воздуходувки (шланги) горячего воздуха с тканевыми фильтрами и без них.
Транспортёры покрывают силиконовой резиной в тех случаях, когда они транспортируют горячие или липкие изделия.
Для текстильной промышленности незаменимое значение приобрели термостойкие и антиадгезионные покрытия из силиконовой резины для валов. Силиконовые резины используются для раскатки клеевых слоев.
В стекольной промышленности по роликам из силиконовой резины осуществляется транспортировка горячих стеклянных заготовок.
Благоприятные физиологические свойства силиконовой резины используются в медицине и пищевой промышленности.
Для медицины огромным преимуществом является то, что силиконовую резину можно стерилизовать горячим воздухом и водяным паром (до +135°C). В медицине нашли применение пробки для флаконов с лекарствами, дренажные трубки, катетеры и зонды из силиконовой резины.
В электротехнике её используют как изоляционный материал, особенно при высоких температурах, а также в тех случаях, которые связаны с воздействием влаги и озона.
Из силиконовой резины делают оболочку для кабеля и провода. В других случаях из неё изготовляют изоляционные трубы, либо без укрепляющих добавок, либо совместно со стеклонаполнителем.
Ленты, изготовленные из стеклонитей или полиэфирного волокна и покрытые силиконовой резиной, в вулканизированной форме, служат как изоляционный материал, который накручивается внахлёст на электрический провод.
Силиконовая резина используется в качестве замазки для нагревательных элементов, устанавливаемых для подпольного отопления террас, передающих установок, наружных лестниц.
Следует отметить также токопроводящие силиконовые резиновые смеси, используемые для изготовления специальных кабелей, например, в автомобилестроении, а также клавишных переключателей в электронных усилителях, использующих изменение сопротивления от давления, высокие токи включения в которых могут создавать акустические помехи.
Наконец, силиконовая резина играет большую роль в области электротехнического машиностроения, например, там, где действуют высокие температуры: в рольгангах, в тяговых электродвигателях, в крановых электродвигателях. Кроме того, из силиконовой резины можно изготовлять покрытия с подогревом, при этом провод сопротивления вводится в резину.
Особую роль силиконовая резина играет в самолёто- и судостроении. Именно в этих отраслях требуется её работоспособность при высоких и низких температурах. Поэтому силиконовой резине здесь отдаётся предпочтение при изготовлении уплотнителей и изоляции.
В машиностроении силиконовая резина играет большую роль как уплотнительный материал. Широкое распространение нашли мембранные вентили и диафрагмы из силиконовой резины.
Большое значение имеют, прежде всего, воздуходувки (шланги) горячего воздуха с тканевыми фильтрами и без них.
Транспортёры покрывают силиконовой резиной в тех случаях, когда они транспортируют горячие или липкие изделия.
Для текстильной промышленности незаменимое значение приобрели термостойкие и антиадгезионные покрытия из силиконовой резины для валов. Силиконовые резины используются для раскатки клеевых слоев.
В стекольной промышленности по роликам из силиконовой резины осуществляется транспортировка горячих стеклянных заготовок.
Благоприятные физиологические свойства силиконовой резины используются в медицине и пищевой промышленности.
Для медицины огромным преимуществом является то, что силиконовую резину можно стерилизовать горячим воздухом и водяным паром (до +135°C). В медицине нашли применение пробки для флаконов с лекарствами, дренажные трубки, катетеры и зонды из силиконовой резины.
четверг, 4 июня 2009 г.
ПЕРЕРАБОТКА СИЛИКОНОВОЙ РЕЗИНЫ
Общие положения
Обработка силиконового каучука горячей вулканизации требует применения смесительных вальцов, пластикатора, экструдера, каландров, вулканизационных прессов и отопительных каналов.
Такое оборудование обычно имеется только на резинообрабатывающих заводах, поставляющих готовые изделия из силиконовой резины. Для снабжения таких заводов исходными материалами в удобной и универсальной форме предлагаются исходные смеси силиконовых каучуков.
Подобные смеси состоят из силиконового каучука, активного наполнителя на базе кремниевой кислоты, полу- и неактивных наполнителей, как, например, инфузорная земля и вспомогательные материалы на силиконовой основе, служащие для упрощения процесса обработки. При добавлении соответствующих вулканизаторов при температурах более +100°C из них можно изготовить эластичные резиновые детали.
Путём развальцовывания других наполнителей в эти исходные смеси можно получить вулканизаты с требуемыми производными свойствами.
Очень важно помнить, что все машины по переработке силиконовой резины должны содержаться в полной чистоте. Даже самые малые количества серных катализаторов и антиоксидантов, которые обычно используются для органической резины, могут сделать силиконовую резину абсолютно непригодной. Поэтому для обработки силиконовой резины целесообразно использовать отдельные машины.
Хранение
Исходные смеси, а также смеси силиконового каучука следует хранить в закрытых емкостях и защищать от воздействия солнечных лучей. Хранение должно производится отдельно от каучуков на органической основе. Хранение готовых к вулканизации смесей (содержащих перекиси) должно производиться при температурах не выше +30°C, в противном случае при обработке могут возникнуть определённые сложности. Срок хранения исходных смесей не менее 12 месяцев, а готовых к вулканизации смесей не менее 4 месяцев.
Пластификация
При длительном хранении смеси силиконовых каучуков становятся хрупкими, поэтому перед обработкой их необходимо пластифицировать для того, чтобы изготовляемые из них изделия имели качественную поверхность.
Пластификация проводится на смесительных вальцах стандартной конструкции. Фрикционная передача обоих вальцов должна быть от 1:1,2 до 1:1,5 и должна иметь охлаждение. Смесь силиконового каучука подаётся в широкий зазор между вальцами и пропускается несколько раз. Если в результате длительного хранения она крошится и падает в ванну кусками, то е надо подавать на валки до тех пор, пока не образуется сплошная лента из материала. Проскакивающие вниз куски следует снова подавать на вальцы, так как если это сделать с запозданием, они не размягчатся, что может привести к образованию уплотнений. Подобные уплотнения значительно снижают характеристики и ухудшают внешний вид резины. Если каучуковая смесь проходит равномерно, то зазор между валками делается уже. Сначала смесь пропускают через вальцы с меньшей скоростью вращения, а затем переходят на более быстрые. За счёт интенсивной обработки смеси время пластификации можно значительно сократить. Не следует опасаться "мёртвого валка", хотя смесь при длительной обработке на валках иногда становится слишком клейкой. Поэтому целесообразно использовать обрезной нож, чтобы эти мягкие смеси можно было снимать с валков.
Пластифицированные смеси остаются готовыми к переработке в течение нескольких дней. Постепенно они снова застывают, поэтому репластификацию необходимо повторять.
Смешивание с наполнителями
При достаточной пластичности исходной смеси на смесительные валки можно дополнительно подавать наполнители. Добавка наполнителей обеспечивает повышение прочности и во многих случаях удешевляет материал. Увеличение содержания наполнителя может упростить процесс напыления для различных смесей. Для силиконовой резины наиболее часто используются следующие наполнители:
Высокодисперсная пиролитическая кремниевая кислота с развитой поверхностью в 200 м2/г;
Инфузорная земля;
Карбид кремния тонкого помола;
Оксид цинка;
Оксид титана и т. д.
Оксид титана и некоторые оксиды железа способствуют повышению термостойкости (до +200-300°C).
При дальнейшем увеличении количества наполнителя наблюдается, как правило, более или менее заметное ухудшение механических показателей, зависящее от использованного наполнителя и его количества. Не следует добавлять более 100 частей неактивного или полуактивного и 30 частей активного наполнителя.
Вулканизирующие средства
Для вулканизации смеси силиконового каучука применяются различные органические перекиси, которые добавляются в исходную смесь, как правило, после наполнителей. После введения перекиси смесь необходимо основательно охладить во избежание её девулканизации.
Органические перекиси, как правило, представляют собой вещества, взрывающиеся от ударов и легковоспламеняющиеся. Вследствие этого они используются часто не в чистом виде, а в разбавленном, например, в виде паст. Эти пасты безопасны при обработке и легко смешиваются. Некоторые другие перекиси даже в чистой форме бывают настолько стабильными, что не реагируют на удар и трение, однако, следует помнить, что они вызывают раздражения кожи и, прежде всего глаз. Поэтому при работе с ними необходимо надеть перчатки и очки. Качество готовой силиконовой резины зависит не только от исходной смеси, но также в значительной мере от выбора перекиси и её количества.
Вот некоторые, самые популярные перекиси:
Бис-(2,4-дихлорбензоил)пероксид (2,4-ДХБ, DCLBP). Используется исключительно для вулканизации без давления. Таким способом изготовляют шланги, кабели, профилированные детали. Вулканизация происходит непрерывно под действием горячего воздуха. Для ускорения вулканизации необходимо поддерживать температуру в пределах от +250 до +400°C.
2,5-диметил-2,5-ди(тетрабутилперокси)гексан (DHBP). Придаёт хорошие механические свойства. Вулканизация идёт при температуре выше +170°C. Благодаря хорошей Scorch-характеристике он особенно пригоден для литья под давлением и литьевого прессования.
Пигменты
Смеси силиконового каучука, как правило, хорошо окрашиваются, так как они непрозрачно-прозрачные или имеют бело-серую окраску. Для окрашивания используются неорганические термостабильные пигменты.
Если не требуется устойчивость к высоким температурам, то можно использовать органические красители:
Белый – диоксид титана, оксид цинка;
Красно-коричневый – оксид железа красный;
Синий - кобальт синий;
Чёрный – сажа.
Пигменты смешиваются в количестве до 1% с перекисью. Равномерность окраски говорит о равномерном распределении перекиси. Следует упомянуть, что особенно удобно применение красок в виде паст.
Обработка силиконового каучука горячей вулканизации требует применения смесительных вальцов, пластикатора, экструдера, каландров, вулканизационных прессов и отопительных каналов.
Такое оборудование обычно имеется только на резинообрабатывающих заводах, поставляющих готовые изделия из силиконовой резины. Для снабжения таких заводов исходными материалами в удобной и универсальной форме предлагаются исходные смеси силиконовых каучуков.
Подобные смеси состоят из силиконового каучука, активного наполнителя на базе кремниевой кислоты, полу- и неактивных наполнителей, как, например, инфузорная земля и вспомогательные материалы на силиконовой основе, служащие для упрощения процесса обработки. При добавлении соответствующих вулканизаторов при температурах более +100°C из них можно изготовить эластичные резиновые детали.
Путём развальцовывания других наполнителей в эти исходные смеси можно получить вулканизаты с требуемыми производными свойствами.
Очень важно помнить, что все машины по переработке силиконовой резины должны содержаться в полной чистоте. Даже самые малые количества серных катализаторов и антиоксидантов, которые обычно используются для органической резины, могут сделать силиконовую резину абсолютно непригодной. Поэтому для обработки силиконовой резины целесообразно использовать отдельные машины.
Хранение
Исходные смеси, а также смеси силиконового каучука следует хранить в закрытых емкостях и защищать от воздействия солнечных лучей. Хранение должно производится отдельно от каучуков на органической основе. Хранение готовых к вулканизации смесей (содержащих перекиси) должно производиться при температурах не выше +30°C, в противном случае при обработке могут возникнуть определённые сложности. Срок хранения исходных смесей не менее 12 месяцев, а готовых к вулканизации смесей не менее 4 месяцев.
Пластификация
При длительном хранении смеси силиконовых каучуков становятся хрупкими, поэтому перед обработкой их необходимо пластифицировать для того, чтобы изготовляемые из них изделия имели качественную поверхность.
Пластификация проводится на смесительных вальцах стандартной конструкции. Фрикционная передача обоих вальцов должна быть от 1:1,2 до 1:1,5 и должна иметь охлаждение. Смесь силиконового каучука подаётся в широкий зазор между вальцами и пропускается несколько раз. Если в результате длительного хранения она крошится и падает в ванну кусками, то е надо подавать на валки до тех пор, пока не образуется сплошная лента из материала. Проскакивающие вниз куски следует снова подавать на вальцы, так как если это сделать с запозданием, они не размягчатся, что может привести к образованию уплотнений. Подобные уплотнения значительно снижают характеристики и ухудшают внешний вид резины. Если каучуковая смесь проходит равномерно, то зазор между валками делается уже. Сначала смесь пропускают через вальцы с меньшей скоростью вращения, а затем переходят на более быстрые. За счёт интенсивной обработки смеси время пластификации можно значительно сократить. Не следует опасаться "мёртвого валка", хотя смесь при длительной обработке на валках иногда становится слишком клейкой. Поэтому целесообразно использовать обрезной нож, чтобы эти мягкие смеси можно было снимать с валков.
Пластифицированные смеси остаются готовыми к переработке в течение нескольких дней. Постепенно они снова застывают, поэтому репластификацию необходимо повторять.
Смешивание с наполнителями
При достаточной пластичности исходной смеси на смесительные валки можно дополнительно подавать наполнители. Добавка наполнителей обеспечивает повышение прочности и во многих случаях удешевляет материал. Увеличение содержания наполнителя может упростить процесс напыления для различных смесей. Для силиконовой резины наиболее часто используются следующие наполнители:
Высокодисперсная пиролитическая кремниевая кислота с развитой поверхностью в 200 м2/г;
Инфузорная земля;
Карбид кремния тонкого помола;
Оксид цинка;
Оксид титана и т. д.
Оксид титана и некоторые оксиды железа способствуют повышению термостойкости (до +200-300°C).
При дальнейшем увеличении количества наполнителя наблюдается, как правило, более или менее заметное ухудшение механических показателей, зависящее от использованного наполнителя и его количества. Не следует добавлять более 100 частей неактивного или полуактивного и 30 частей активного наполнителя.
Вулканизирующие средства
Для вулканизации смеси силиконового каучука применяются различные органические перекиси, которые добавляются в исходную смесь, как правило, после наполнителей. После введения перекиси смесь необходимо основательно охладить во избежание её девулканизации.
Органические перекиси, как правило, представляют собой вещества, взрывающиеся от ударов и легковоспламеняющиеся. Вследствие этого они используются часто не в чистом виде, а в разбавленном, например, в виде паст. Эти пасты безопасны при обработке и легко смешиваются. Некоторые другие перекиси даже в чистой форме бывают настолько стабильными, что не реагируют на удар и трение, однако, следует помнить, что они вызывают раздражения кожи и, прежде всего глаз. Поэтому при работе с ними необходимо надеть перчатки и очки. Качество готовой силиконовой резины зависит не только от исходной смеси, но также в значительной мере от выбора перекиси и её количества.
Вот некоторые, самые популярные перекиси:
Бис-(2,4-дихлорбензоил)пероксид (2,4-ДХБ, DCLBP). Используется исключительно для вулканизации без давления. Таким способом изготовляют шланги, кабели, профилированные детали. Вулканизация происходит непрерывно под действием горячего воздуха. Для ускорения вулканизации необходимо поддерживать температуру в пределах от +250 до +400°C.
2,5-диметил-2,5-ди(тетрабутилперокси)гексан (DHBP). Придаёт хорошие механические свойства. Вулканизация идёт при температуре выше +170°C. Благодаря хорошей Scorch-характеристике он особенно пригоден для литья под давлением и литьевого прессования.
Пигменты
Смеси силиконового каучука, как правило, хорошо окрашиваются, так как они непрозрачно-прозрачные или имеют бело-серую окраску. Для окрашивания используются неорганические термостабильные пигменты.
Если не требуется устойчивость к высоким температурам, то можно использовать органические красители:
Белый – диоксид титана, оксид цинка;
Красно-коричневый – оксид железа красный;
Синий - кобальт синий;
Чёрный – сажа.
Пигменты смешиваются в количестве до 1% с перекисью. Равномерность окраски говорит о равномерном распределении перекиси. Следует упомянуть, что особенно удобно применение красок в виде паст.
Износостойкость.
Основным показателем износостойкости является истираемость и сопротивление истиранию, которые определяются в условиях качения с проскальзыванием (ГОСТ 12251—77) или в условиях скольжения по истирающей поверхности, обычно, как и в предыдущем случае, по шлифовальной шкурке ГОСТ 426—77).
Истираемость (определяется как отношение уменьшения объема образца при истирании к работе, затраченной на истирание, и выражается в м3/МДж[см3/(кВт(ч)].
Сопротивление истиранию (определяется как отношение затраченной работы на истирание к уменьшению объема образца при истирании и выражается в МДж/м3 [см3/(кВт(ч)].
Истирание кольцевых образцов при качении с проскальзыванием более соответствует условиям износа протекторов шин при эксплуатации и поэтому применяется при испытаниям на износостойкость протекторных резин.
Истираемость (определяется как отношение уменьшения объема образца при истирании к работе, затраченной на истирание, и выражается в м3/МДж[см3/(кВт(ч)].
Сопротивление истиранию (определяется как отношение затраченной работы на истирание к уменьшению объема образца при истирании и выражается в МДж/м3 [см3/(кВт(ч)].
Истирание кольцевых образцов при качении с проскальзыванием более соответствует условиям износа протекторов шин при эксплуатации и поэтому применяется при испытаниям на износостойкость протекторных резин.
Варочная камера.
Варочная камера является составной частью вулканизационного пресса.
Камеры шин вулканизуются в сходных пресс-формах, имеющих гладкую поверхность. Среднее время вулканизации одной камеры составляет около 7 мин при 155° С. При меньших температурах время вулканизации возрастает.
Многие изделия меньшего размера вулканизуются в металлических пресс-формах, которые размещаются между параллельными плитами гидравлического пресса.
Плиты пресса внутри полые, чтобы обеспечить доступ пара для нагрева без непосредственного контакта с изделием. Изделие получает тепло только через металлическую пресс-форму.
Многие изделия вулканизуются нагревом в воздухе или углекислом газе. Прорезиненная ткань, одежда, плащи и резиновая обувь вулканизуются таким способом.
Процесс обычно проводится в больших горизонтальных вулканизаторах с паровой рубашкой. Резиновые смеси, вулканизуемые сухим теплом, обычно содержат меньшую добавку серы, чтобы исключить выход части серы на поверхность изделия. Для уменьшения времени вулканизации, которое, как правило, больше, чем при вулканизации открытым паром или под прессом, используются вещества-ускорители.
Некоторые резиновые изделия вулканизуются погружением в горячую воду под давлением. Листовой каучук наматывается между слоями муслина на барабан и вулканизуется в горячей воде под давлением. Резиновые груши, шланги, изоляция для проводов вулканизуются в открытом паре.
Вулканизаторы обычно представляют собой горизонтальные цилиндры с плотно подогнанными крышками.
Пожарные шланги вулканизуются паром с внутренней стороны и таким образом играют роль собственных вулканизаторов. Каучуковый шланг втягивается вовнутрь плетеного хлопчатобумажного шланга, к ним прикрепляются соединительные фланцы и внутрь заготовки на заданное время под давлением нагнетается пар.
Вулканизирующие вещества (агенты) участвуют в образовании пространственно-сеточной структуры вулканизата. Обычно в качестве таких веществ применяют серу и селен, для некоторых каучуков перекиси.
Для резины электротехнического назначения вместо элементарной серы (которая взаимодействует с медью) применяют органические сернистые соединения — тиурам (тиурамовые резины).
Камеры шин вулканизуются в сходных пресс-формах, имеющих гладкую поверхность. Среднее время вулканизации одной камеры составляет около 7 мин при 155° С. При меньших температурах время вулканизации возрастает.
Многие изделия меньшего размера вулканизуются в металлических пресс-формах, которые размещаются между параллельными плитами гидравлического пресса.
Плиты пресса внутри полые, чтобы обеспечить доступ пара для нагрева без непосредственного контакта с изделием. Изделие получает тепло только через металлическую пресс-форму.
Многие изделия вулканизуются нагревом в воздухе или углекислом газе. Прорезиненная ткань, одежда, плащи и резиновая обувь вулканизуются таким способом.
Процесс обычно проводится в больших горизонтальных вулканизаторах с паровой рубашкой. Резиновые смеси, вулканизуемые сухим теплом, обычно содержат меньшую добавку серы, чтобы исключить выход части серы на поверхность изделия. Для уменьшения времени вулканизации, которое, как правило, больше, чем при вулканизации открытым паром или под прессом, используются вещества-ускорители.
Некоторые резиновые изделия вулканизуются погружением в горячую воду под давлением. Листовой каучук наматывается между слоями муслина на барабан и вулканизуется в горячей воде под давлением. Резиновые груши, шланги, изоляция для проводов вулканизуются в открытом паре.
Вулканизаторы обычно представляют собой горизонтальные цилиндры с плотно подогнанными крышками.
Пожарные шланги вулканизуются паром с внутренней стороны и таким образом играют роль собственных вулканизаторов. Каучуковый шланг втягивается вовнутрь плетеного хлопчатобумажного шланга, к ним прикрепляются соединительные фланцы и внутрь заготовки на заданное время под давлением нагнетается пар.
Вулканизирующие вещества (агенты) участвуют в образовании пространственно-сеточной структуры вулканизата. Обычно в качестве таких веществ применяют серу и селен, для некоторых каучуков перекиси.
Для резины электротехнического назначения вместо элементарной серы (которая взаимодействует с медью) применяют органические сернистые соединения — тиурам (тиурамовые резины).
Вулканизация.
Вулканизация проводится несколькими способами. Многим изделиям придается окончательная форма только на стадии вулканизации, когда заключенная в металлические формы резиновая смесь подвергается воздействию температуры и давления.
Автомобильные шины после сборки на барабане формуются до нужного размера и затем вулканизуются в рифленых стальных формах. Формы устанавливаются одна на другую в вертикальном вулканизационном автоклаве, и в замкнутый нагреватель запускается пар. В невулканизованную заготовку шины вставляется пневмомешок той же формы, что и камера шины. По гибким медным трубкам в него запускаются воздух, пар, горячая вода по отдельности или в сочетании друг с другом; эти служащие для передачи давления текучие среды раздвигают каркас шины, заставляя каучук втекать в фасонные углубления формы. В современной практике технологи стремятся к увеличению числа шин, вулканизуемых в отдельных вулканизаторах, называемых пресс-формами.
Эти литые пресс-формы имеют полые стенки, обеспечивающие внутреннюю циркуляцию пара, горячей воды и воздуха, которые подводят тепло к заготовке. В заданное время пресс-формы автоматически открываются.
Были разработаны автоматизированные вулканизационные прессы, которые вставляют в заготовку шины варочную камеру, вулканизуют шину и удаляют варочную камеру из готовой шины.
Автомобильные шины после сборки на барабане формуются до нужного размера и затем вулканизуются в рифленых стальных формах. Формы устанавливаются одна на другую в вертикальном вулканизационном автоклаве, и в замкнутый нагреватель запускается пар. В невулканизованную заготовку шины вставляется пневмомешок той же формы, что и камера шины. По гибким медным трубкам в него запускаются воздух, пар, горячая вода по отдельности или в сочетании друг с другом; эти служащие для передачи давления текучие среды раздвигают каркас шины, заставляя каучук втекать в фасонные углубления формы. В современной практике технологи стремятся к увеличению числа шин, вулканизуемых в отдельных вулканизаторах, называемых пресс-формами.
Эти литые пресс-формы имеют полые стенки, обеспечивающие внутреннюю циркуляцию пара, горячей воды и воздуха, которые подводят тепло к заготовке. В заданное время пресс-формы автоматически открываются.
Были разработаны автоматизированные вулканизационные прессы, которые вставляют в заготовку шины варочную камеру, вулканизуют шину и удаляют варочную камеру из готовой шины.
Экструзия.
Экструдер применяется для формования труб, шлангов, протекторов шин, камер пневматических шин, уплотнительных прокладок для автомобилей и других изделий. Он состоит из стального цилиндрического корпуса, снабженного рубашкой для нагрева или охлаждения.
Плотно прилегающий к корпусу шнек подает невулканизованную резиновую смесь, предварительно нагретую на вальцах, через корпус к головке, в которую вставляется сменный формующий инструмент, определяющий форму получаемого изделия.
Выходящее из головки изделие обычно охлаждается струей воды.
Камеры пневматических шин выходят из экструдера в виде непрерывной трубки, которая потом разрезается на части нужной длины.
Многие изделия, например уплотнительные прокладки и небольшие трубки, выходят из экструдера в окончательной форме, а потом вулканизуются.
Другие изделия, например протекторы шин, выходят из экструдера в виде прямых заготовок, которые впоследствии накладываются на корпус шины и привулканизовываются к нему, меняя свою первоначальную форму.
Плотно прилегающий к корпусу шнек подает невулканизованную резиновую смесь, предварительно нагретую на вальцах, через корпус к головке, в которую вставляется сменный формующий инструмент, определяющий форму получаемого изделия.
Выходящее из головки изделие обычно охлаждается струей воды.
Камеры пневматических шин выходят из экструдера в виде непрерывной трубки, которая потом разрезается на части нужной длины.
Многие изделия, например уплотнительные прокладки и небольшие трубки, выходят из экструдера в окончательной форме, а потом вулканизуются.
Другие изделия, например протекторы шин, выходят из экструдера в виде прямых заготовок, которые впоследствии накладываются на корпус шины и привулканизовываются к нему, меняя свою первоначальную форму.
Каландрование.
После того как сырой каучук пластицирован и смешан с ингредиентами резиновой смеси, он подвергается дальнейшей обработке перед вулканизацией, чтобы придать ему форму конечного изделия.
Тип обработки зависит от области применения резинового изделия. На этой стадии процесса широко используются каландрование и экструзия.
Каландры представляют собой машины, предназначенные для раскатки резиновой смеси в листы или промазки ею тканей. Стандартный каландр обычно состоит из трех горизонтальных валов, расположенных один над другим, хотя для некоторых видов работ используются четырехвальные и пятивальные каландры.
Полые каландровые валы имеют длину до 2,5 м и диаметр до 0,8 м. К валам подводятся пар и холодная вода, чтобы контролировать температуру, выбор и поддержание которой имеют решающее значение для получения качественного изделия с постоянной толщиной и гладкой поверхностью. Соседние валы вращаются в противоположных направлениях, причем частота вращения каждого вала и расстояние между валами точно контролируются. На каландре выполняются нанесение покрытия на ткани, промазка тканей и раскатка резиновой смеси в листы.
Тип обработки зависит от области применения резинового изделия. На этой стадии процесса широко используются каландрование и экструзия.
Каландры представляют собой машины, предназначенные для раскатки резиновой смеси в листы или промазки ею тканей. Стандартный каландр обычно состоит из трех горизонтальных валов, расположенных один над другим, хотя для некоторых видов работ используются четырехвальные и пятивальные каландры.
Полые каландровые валы имеют длину до 2,5 м и диаметр до 0,8 м. К валам подводятся пар и холодная вода, чтобы контролировать температуру, выбор и поддержание которой имеют решающее значение для получения качественного изделия с постоянной толщиной и гладкой поверхностью. Соседние валы вращаются в противоположных направлениях, причем частота вращения каждого вала и расстояние между валами точно контролируются. На каландре выполняются нанесение покрытия на ткани, промазка тканей и раскатка резиновой смеси в листы.
Приготовление резиновой смеси (ингредиенты).
Химическое соединение только из каучука и серы имело бы ограниченное практическое применение.
Чтобы улучшить физические свойства каучука и сделать его более пригодным для эксплуатации в различных применениях, необходимо модифицировать его свойства путем добавления других веществ.
Все вещества, смешиваемые с каучуком перед вулканизацией, включая серу, называются ингредиентами резиновые смеси. Они вызывают как химические, так и физические изменения в каучуке.
Их назначение – модифицировать твердость, прочность и ударную вязкость и увеличить стойкость к истиранию, маслам, кислороду, химическим растворителям, теплу и растрескиванию. Для изготовления резин разных применений используются различные составы.
Ускорители и активаторы. Вещества, называемые ускорителями, при использовании вместе с серой уменьшают время вулканизации и улучшают физические свойства каучука. Примерами неорганических ускорителей являются свинцовые белила, свинцовый глет (монооксид свинца), известь и магнезия (оксид магния). Органические ускорители гораздо более активны и являются важной частью почти любой резиновой смеси. Они вводятся в смесь в относительно малой доле: обычно бывает достаточно от 0,5 до 1,0 части на 100 частей каучука. Большинство ускорителей полностью проявляет свою эффективность в присутствии активаторов, таких, как окись цинка, а для некоторых требуется органическая кислота, например стеариновая. Поэтому современные рецептуры резиновых смесей обычно включают окись цинка и стеариновую кислоту.
Мягчители (пластификаторы).
Мягчители и пластификаторы обычно используются для сокращения времени приготовления резиновой смеси и понижения температуры процесса. Они также способствуют диспергированию* ингредиентов смеси, вызывая набухание или растворение каучука. Типичными мягчителями являются парафиновое и растительные масла, воски, олеиновая и стеариновая кислоты, хвойная смола, каменноугольная смола и канифоль, вазелин, битумы и дибутилфталат**. Количество мягчителей составляет 8—30 % массы каучука.
*Диспергирование – тонкое измельчение твердых и жидких тел в какой-либо среде для получения порошков, суспензий и эмульсий.
**Дибутилфталат,ди-н-бутиловый эфир о-фталевой кислоты, С6Н4(СООС4Н9)2, бесцветная маслянистая жидкость со слабым фруктовым запахом; tkип 206°С (10 мм рт. ст.); плотность 1047-1050 кг/м3 (25°С); показатель преломления n25D 1,490-1,493; растворимость в воде 0,1% (20°С). Д. получают из н-бутилового спирта и фталевого ангидрида в присутствии кислотных катализаторов. Д. - пластификатор поливинилхлорида, полистирола и многих др. пластмасс и синтетических каучуков (БСЭ).
Наполнители.
Вещества добавляемые к каучуку для удешевления получаемых из него продуктов (наполнители или инертные наполнители). Некоторые вещества усиливают каучук, придавая ему прочность и сопротивляемость износу, они называются упрочняющими наполнителями (или активными, или усиливающими наполнителями). Углеродная (газовая) сажа в тонко измельченной форме – наиболее распространенный упрочняющий наполнитель; она относительно дешева и является одним из самых эффективных веществ такого рода. Протекторная резина автомобильной шины содержит приблизительно 45 частей углеродной сажи на 100 частей каучука. Другими широко используемыми упрочняющими наполнителями являются окись цинка, карбонат магния, кремнезем, карбонат кальция и некоторые глины, однако все они менее эффективны, чем газовая сажа. Следует упомянуть, что часто в состав резиновой смеси вводят регенерат — продукт переработки старых резиновых изделий и отходов резинового производства. Кроме снижения стоимости регенерат повышает качество резины, снижая ее склонность к старению.
Антиоксиданты и противостарители.
Использование антиоксидантов для сохранения нужных свойств резиновых изделий в процессе их старения и эксплуатации началось после Второй мировой войны. Как и ускорители вулканизации, антиоксиданты – сложные органические соединения, которые при концентрации 1–2 части на 100 частей каучука препятствуют росту жесткости и хрупкости резины. Воздействие воздуха, озона, тепла и света – основная причина старения резины. Некоторые антиоксиданты также защищают резину от повреждения при изгибе и нагреве. Упрощенно, действие антиоксидантов заключается в том, что они задерживают окисление каучука посредством окисления их самих или за счет разрушения образующихся перекисей каучука применяются альдоль, неозон Д и др.). Противостарители (парафин, воск)же образуют поверхностные защитные пленки, они применяются реже.
Пигменты.
Хотя упрочняющие и инертные наполнители и другие ингредиенты резиновой смеси часто называют пигментами, хотя используются и настоящие пигменты, которые придают цвет резиновым изделиям. Оксиды цинка и титана, сульфид цинка и литопон применяются в качестве белых пигментов. Желтый крон, железоокисный пигмент, сульфид сурьмы, ультрамарин и ламповая сажа используются для придания изделиям различных цветовых оттенков. Некоторые красящие вещества (белые, желтые, зеленые) поглощают коротковолновую часть солнечного спектра и этим защищают резину от светового старения.
Чтобы улучшить физические свойства каучука и сделать его более пригодным для эксплуатации в различных применениях, необходимо модифицировать его свойства путем добавления других веществ.
Все вещества, смешиваемые с каучуком перед вулканизацией, включая серу, называются ингредиентами резиновые смеси. Они вызывают как химические, так и физические изменения в каучуке.
Их назначение – модифицировать твердость, прочность и ударную вязкость и увеличить стойкость к истиранию, маслам, кислороду, химическим растворителям, теплу и растрескиванию. Для изготовления резин разных применений используются различные составы.
Ускорители и активаторы. Вещества, называемые ускорителями, при использовании вместе с серой уменьшают время вулканизации и улучшают физические свойства каучука. Примерами неорганических ускорителей являются свинцовые белила, свинцовый глет (монооксид свинца), известь и магнезия (оксид магния). Органические ускорители гораздо более активны и являются важной частью почти любой резиновой смеси. Они вводятся в смесь в относительно малой доле: обычно бывает достаточно от 0,5 до 1,0 части на 100 частей каучука. Большинство ускорителей полностью проявляет свою эффективность в присутствии активаторов, таких, как окись цинка, а для некоторых требуется органическая кислота, например стеариновая. Поэтому современные рецептуры резиновых смесей обычно включают окись цинка и стеариновую кислоту.
Мягчители (пластификаторы).
Мягчители и пластификаторы обычно используются для сокращения времени приготовления резиновой смеси и понижения температуры процесса. Они также способствуют диспергированию* ингредиентов смеси, вызывая набухание или растворение каучука. Типичными мягчителями являются парафиновое и растительные масла, воски, олеиновая и стеариновая кислоты, хвойная смола, каменноугольная смола и канифоль, вазелин, битумы и дибутилфталат**. Количество мягчителей составляет 8—30 % массы каучука.
*Диспергирование – тонкое измельчение твердых и жидких тел в какой-либо среде для получения порошков, суспензий и эмульсий.
**Дибутилфталат,ди-н-бутиловый эфир о-фталевой кислоты, С6Н4(СООС4Н9)2, бесцветная маслянистая жидкость со слабым фруктовым запахом; tkип 206°С (10 мм рт. ст.); плотность 1047-1050 кг/м3 (25°С); показатель преломления n25D 1,490-1,493; растворимость в воде 0,1% (20°С). Д. получают из н-бутилового спирта и фталевого ангидрида в присутствии кислотных катализаторов. Д. - пластификатор поливинилхлорида, полистирола и многих др. пластмасс и синтетических каучуков (БСЭ).
Наполнители.
Вещества добавляемые к каучуку для удешевления получаемых из него продуктов (наполнители или инертные наполнители). Некоторые вещества усиливают каучук, придавая ему прочность и сопротивляемость износу, они называются упрочняющими наполнителями (или активными, или усиливающими наполнителями). Углеродная (газовая) сажа в тонко измельченной форме – наиболее распространенный упрочняющий наполнитель; она относительно дешева и является одним из самых эффективных веществ такого рода. Протекторная резина автомобильной шины содержит приблизительно 45 частей углеродной сажи на 100 частей каучука. Другими широко используемыми упрочняющими наполнителями являются окись цинка, карбонат магния, кремнезем, карбонат кальция и некоторые глины, однако все они менее эффективны, чем газовая сажа. Следует упомянуть, что часто в состав резиновой смеси вводят регенерат — продукт переработки старых резиновых изделий и отходов резинового производства. Кроме снижения стоимости регенерат повышает качество резины, снижая ее склонность к старению.
Антиоксиданты и противостарители.
Использование антиоксидантов для сохранения нужных свойств резиновых изделий в процессе их старения и эксплуатации началось после Второй мировой войны. Как и ускорители вулканизации, антиоксиданты – сложные органические соединения, которые при концентрации 1–2 части на 100 частей каучука препятствуют росту жесткости и хрупкости резины. Воздействие воздуха, озона, тепла и света – основная причина старения резины. Некоторые антиоксиданты также защищают резину от повреждения при изгибе и нагреве. Упрощенно, действие антиоксидантов заключается в том, что они задерживают окисление каучука посредством окисления их самих или за счет разрушения образующихся перекисей каучука применяются альдоль, неозон Д и др.). Противостарители (парафин, воск)же образуют поверхностные защитные пленки, они применяются реже.
Пигменты.
Хотя упрочняющие и инертные наполнители и другие ингредиенты резиновой смеси часто называют пигментами, хотя используются и настоящие пигменты, которые придают цвет резиновым изделиям. Оксиды цинка и титана, сульфид цинка и литопон применяются в качестве белых пигментов. Желтый крон, железоокисный пигмент, сульфид сурьмы, ультрамарин и ламповая сажа используются для придания изделиям различных цветовых оттенков. Некоторые красящие вещества (белые, желтые, зеленые) поглощают коротковолновую часть солнечного спектра и этим защищают резину от светового старения.
Использование грануляторов – машин, которые разрезают каучук на маленькие гранулы или пластинки одинаковых размеров и формы, – облегчает операции по дозировке и управлению процессом обработки каучука. Каучук подается в гранулятор по выходе из пластикатора. Получающиеся гранулы смешиваются с углеродной сажей и маслами в смесителе Бенбери, образуя маточную смесь, которая также гранулируется. После обработки в смесителе Бенбери производится смешивание с вулканизующими веществами, серой и ускорителями вулканизации.
Пластикация
Пластикация. Одно из важнейших свойств каучука – пластичность – используется в производстве резиновых изделий. Чтобы смешать каучук с другими ингредиентами резиновой смеси, его нужно сначала умягчить, или пластицировать, путем механической или термической обработки.
Этот процесс называется пластикацией каучука. Открытие Т.Хэнкоком в 1820 возможности пластикации каучука имело огромное значение для резиновой промышленности.
Его пластикатор состоял из шипованного ротора, вращающегося в шипованном полом цилиндре; это устройство имело ручной привод.
В современной резиновой промышленности используются три типа подобных машин до ввода других компонентов резиновой смеси в каучук. Это – каучукотерка, смеситель Бенбери и пластикатор Гордона.
Этот процесс называется пластикацией каучука. Открытие Т.Хэнкоком в 1820 возможности пластикации каучука имело огромное значение для резиновой промышленности.
Его пластикатор состоял из шипованного ротора, вращающегося в шипованном полом цилиндре; это устройство имело ручной привод.
В современной резиновой промышленности используются три типа подобных машин до ввода других компонентов резиновой смеси в каучук. Это – каучукотерка, смеситель Бенбери и пластикатор Гордона.
Переработка резины
Резиновые изделия ввиду своего химического строения (трехмерная химическая сетка) долгое время считались в принципе не перерабатываемым и поэтому проблемным материалом.
Между тем, с помощью новых технологий удалось переработать каждый вид резиновых изделий в конечный продукт, сырье или источник энергии.
На данный момент, изношенные шины перерабатываются в больших количествах в резиновый гранулят, крошку и/или резиновую пыль. Производимая из них продукция, как, например изоляционные плиты, детали, эластичные маты и напольные покрытия, с успехом применяется уже много лет.
Резиновый гранулят (> 0,630 мм)
Компания INTEC разработала технологию изготовления дуропласта из резинового гранулята, полученного криогенным способом. С вяжущими веществами дуропласта могут соединяться до 95% резины, что дает возможность производить большое количество разнообразных изделий.
Для гранулята INTEC предлагает технологию производства спортивных напольных покрытий:
Область применения: теннисные, футбольные площадки, спортивные площадки для бадминтона, хоккея, бейсбола, американского футбола, площадки для бега и прыжков.
Данные изделия имеют следующие свойства:
Водопроницаемость
Высокая прочность в момент разрыва
Естественный изолятор
Сокращение расходов на содержание
Возможность эксплуатации при любых погодных условиях
Легко проводимые ремонтные работы
Также изделия из дуропласта на основе резинового гранулята могут применяться в сельском хозяйстве, строительстве, коммунальном хозяйстве.
Коммунальное хозяйство: элементы детских игровых площадок, велосипедные дорожки, напольные покрытия, спасательные маты.
Сельское хозяйство: животноводство, садоводчество, теплицы.
Строительство: дренажные маты, резина, изоляционные материалы, изоляционные материалы от ударного шума.
Произведенные из резинового гранулята и вяжущих веществ дуропласта стандартные изделия подвергаются жесткой конкуренции. Резиновый гранулят проигрывает в цене, т.к. возможности его технического применения ограничены, а предложение постоянно растет. Продажи при этом подвергаются сезонным колебаниям.
Резиновая крошка (0,1 мм - 10 мм)
Резиновая крошка, полученная в результате переработки изношенных автопокрышек, имеет многочисленные и перспективные области дальнейшего практического применения, что при эффективной организации маркетингового сопровождения безусловно обеспечит ее быструю и устойчивую реализацию на отечественном и зарубежном рынках, а также эффективное вовлечение в высокорентабельное производство конкурентно-способных изделий.
порошковая резина с размерами менее 0,1 мм используется при частичной замне ПВХ,различных добавок в полимерные смеси,производства термопластгранулятов и дуропластов.
порошковая резина с размерами частиц от 0,2 до 0,45 мм используется в качестве добавки (5...20%) в резиновые смеси для изготовления новых автомобильных покрышек, массивных шин и других резинотехнических изделий. Применение резинового порошка с высокоразвитой удельной поверхностью частиц (2500-3500 см. кв/г), получаемой при его механическом измельчении, повышает стойкость шин к изгибающим воздействиям и удару, увеличивая срок их эксплуатации;
порошковая резина с размерами частиц до 0,6 мм используется в качестве добавки (до 50...70%) при изготовлении резиновой обуви и других резинотехнических изделий. При этом свойства таких резин (прочность, деформируемость) практически не отличаются от свойств обычной резины, изготовленной из сырых каучуков;
порошковую резину с размерами частиц до 1,0 мм можно применять для изготовления композиционных кровельных материалов (рулонной кровли и резинового шифера), подкладок под рельсы, резинобитумных мастик, вулканизованных и не вулканизованных рулонных гидроизоляционных материалов;
порошковая резина с размерами частиц от 0,5 до 1,0 мм применяется в качестве добавки для модификации нефтяного битума в асфальтобетонных смесях, используемых при строительстве автомобильных дорог, которые улучшают их деформационные и фрикционные свойства. Такие добавки позволяют увеличить прочность покрытия дорог, а также их стойкость к удару, морозостойкость и стойкость к растрескиванию полотна при температурных перепадах. Объем дробленой резины в составе таких усовершенствованных покрытий должен составлять около 2% от массы минерального материала, т.е. 60...70 тонн на 1 км дорожного полотна. При этом срок эксплуатации дорожного полотна увеличивается в 1,5 - 2 раза.Такие порошки используются также в качестве сорбента для сбора сырой нефти и жидких нефтепродуктов с поверхности воды и почвы, для тампонирования нефтяных скважин, гидроизоляции зеленых пластов и т.д.;
резиновая крошка с размерами частиц от 2 до 10 мм используется при изготовлении массивных резиновых плит для комплектования трамвайных и железнодорожных переездов, отличающихся длительностью эксплуатации, хорошей атмосферостойкостью, пониженным уровнем шума и современным дизайном; спортивных площадок с удобным и безопасным покрытием; животноводческих помещений и т.д.
Резиновая пыль (0,315-0,630 мм)
Напольные покрытия из дуропласта и непрерывные резиновые ленты.
Для резиновой пыли размером 0,315-0,630 мм, произведенной криогенным методом, INTEC разработал технологию производства напольных покрытий из дуропласта и непрерывных резиновых лент.
Данные изделия могут быть произведены для средних, сильных и специальных нагрузок согласно требованиям DIN (Немецкие промышленные нормы). Возможно различное цветовое исполнение.
Напольные покрытия могут применяться в магазинах, выставочных залах, лабораториях, конференц-залах, ресторанах, кино, больницах, на вокзалах, жилых помещениях и т.д.
Непрерывные резиновые ленты применяются в строительстве в качестве изоляционного материала и лент для плоских крыш.
Соединение из дуропласта и резиновой пыли также может применяться в качестве тепло - и холодоизолятора, дренажных матов, звукоизоляционного материала и т.д.
Изделия из резиновой пыли и связующих веществ дуропласта равноценны материалам, произведенным из вторичного сырья, частично они даже превосходят их по своим свойствам и по сравнению с ними являются более дешевыми.
Использование резиновой пыли при производстве термопластов
Технология по переработке резиновой пыли в термопласты была разработана компанией INTEC. При этом резиновая пыль и термопласты перерабатываются на специальных машинах для термопласта в новый продукт, который может быть применен в следующих областях:
Промышленность: профиль, подошвы, резиновые сапоги, пластиковые формовочные детали, уплотнительные шпагаты.
Сельское хозяйство: поливочные шланги, газонные камни, контейнеры для семян, ящики для цветов, емкости для отходов, маты для конюшен.
Преимуществом при этом является экономия дорогого первичного сырья и способность конечного продукта к переработке.
Прочие технологии
Ряд поставщиков разработал биологические и химические технологии, которые должны осуществлять процесс повторной вулканизации резиновой пыли. В принципе, с помощью данных методов эта цель достижима, экономическое же применение их в промышленных условиях пока еще невозможно.
Биологическим методом предпринимаются попытки достичь девулканизации резиновой пыли (< 0,5 мм) с помощью серопоглощающих бактерий, при этом серные мостики внутри эластомерной матрицы и полимерная сетка разрушаются.
Прежние пилотные попытки были оценены положительно. Результаты опытов в промышленном масштабе еще только предстоит оценить. Т.к. резиновая пыль при биологической обработке должна быть разделена до частиц размером мельче 0,5 мм, данный способ с экономической точки зрения является нерентабельным.
Различные химические технологии с успехом применяются уже свыше 2 лет с участием нового реагента. Данный реагент является смесью биокатализаторов, который содержится среди других ускорителей. Эта смесь добавляется в резиновую пыль. Благодаря механической обработке происходит разрыхление серных цепочек, что влечет за собой деполимеризацию.
Мельчайшая резиновая пыль (< 0,315 мм)
Продукция, пользующаяся спросом в промышленности - это мельчайшая резиновая пыль с высокой степенью чистоты, которая в настоящее время не может быть предложена на рынке или может быть представлена в очень ограниченных количествах.
Это специальная мельчайшая резиновая пыль < 0.315 мм, делающая возможным замену первичного сырья. При этом удельная площадь поверхности частицы увеличена до размера, при котором значительно улучшаются ее адгезионные свойства.
Только подобная замена первичного сырья при производстве технических эластомеров может считаться непосредственно переработкой.
При этом применяются продукты переработки одного уровня стоимости относительно первичного сырья, являющиеся его прямыми конкурентами. Также требуется, чтобы данные продукты переработки имели подобные или лучшие технические свойства по сравнению с оригинальными.
До сих пор данное требование устанавливало границы применения резиновой пыли при производстве высококачественных эластомерных изделий, т.к. ранее на рынке отсутствовала мельчайшая резиновая пыль требуемого качества или присутствовала, но в ограниченных количествах
Поступающая в настоящее время в продажу резиновая пыль, произведенная преимущественно методом теплового измельчения, не обладает достаточной степенью чистоты и необходимым мелким размером частиц, что требуется для создания высококачественной продукции.
Однако именно данные свойства являются обязательным условием промышленных технологий. Так, в литьевой технологии (например, в автомобильной промышленности), может применяться исключительно мельчайшая резиновая пыль < 0,250 мм.
Компания INTEC благодаря применению оптимального размельчающего и сепарационного оборудования производит мельчайшую резиновую пыль в больших количествах размером частиц < 0.250 мм и тем самым делает возможным применение резиновой пыли для создания высококачественных эластомеров.
Изделия из эластомера, произведенные из мельчайшей резиновой пыли
Возможно производить переработку мельчайшей резиновой пыли в эластомерные изделия. Что открывает новые возможности применения мельчайшей резиновой пыли высокого качества и конкурентой стоимости. Преимуществом также является то, что данные эластомеры позднее могут быть вторично переработаны.
Возможные изделия из мельчайшей резиновой пыли:
Ленточные конвейеры
Шланги
Профили
Автомобильные детали
Изолирующие слои
Звукоизоляционные и виброзащитные
Покрытия кантов
Экструзионные изделия
Некоторые РТИ
DE-LINKTM-технология
С помощью механико-химической технологии при применении DE-LINKTM-реагента в вулканизированной резине происходит разрыхление сернистых соединений без существенных повреждений главной полимерной сетки.
DE-LINKTM-реагент - концентрат высокоактивных, нетоксичных химикатов, обеспечивающий его надежное и экологичное применение. В результате данной девулканизации образуется композиционный материал, полученный в ходе рециклинга, со свойствами, подобными резине, реализуемый на рынке под маркой DE-VULKд.
Компания INTEC совместно с фирмой «STI-K Polymers», держателем патента международно известной DE-LINKд - технологии, запатентированной в 55 странах, ведет совместную стратегическую работу на договорной основе и имеет эксклюзивные права на продажу.
В процессе совместной исследовательской деятельности компании INTEC и «STI-K Polymers» протестировали применение криогенной мельчайшей резиновой пыли вместо применявшегося до сих пор резинового гранулята.
Благодаря высокой степени чистоты резиновой пыли INTEC в результате вулканизации с применением DE-LINKд-реагента образуется высококачественный композиционный материал, сохраняющий более чем 90% первоначальных свойств резины. Данный уникальный качественный продукт, полученный в ходе рециклинга резины, может быть переработан в эластомерные изделия, использоваться в качестве заменителя первичного сырья или вулканизирован обычным способом. Новый, высококачественный композиционный материал существенно расширяет сферы его применения и создает новые возможности развития продукции.
Для осуществления данной цели компания INTEC и «STI-K Polymers» совместно с Институтом синтетической резины им. Лебедева (Санкт-Петербург), тесно сотрудничая, продолжают совместные исследования и разработки в данной области.
Применение резиновой пыли Intec, произведенной криогенным способом, совместно с DE-LINKTM-технологией открывает абсолютно новую эру переработки изношенной резины и экономически рентабельного производства высококачественных изделий с широкими сферами их применения.
Замена первичного сырья на эластомерные смеси
Последующая химическая обработка резиновой частицы делает возможным замену большого количества содержащегося в эластомерных соединениях первичного сырья на резиновую пыль без изменений физических параметров.
До сегодняшнего дня резиновая пыль могла быть примешена к композиционным материалам в качестве наполнителя, не ухудшая их физических свойств, только в количестве 5-10%.
Только благодаря развитию новой технологии химической переработки удалось производить полимеры из резиновой пыли, которые могут применяться не только как наполнители, но и как материалы, равноценные первичному сырью. Одновременно мельчайшая пыль INTEC ввиду свойств ее частиц и высокой степени чистоты от примесей допускает дальнейшее расширение возможностей замены при постоянно растущем качестве продукции.
Возможности замены первичного сырья на мельчайшую резиновую пыль существуют практически для всех эластомерных изделий.
Первичное сырье в зависимости от цели применения продукта может быть заменено до 90%. Чем выше степень замены первичного сырья на резиновую пыль, тем соответственно ниже расходы.
Применение в обувной промышленности
Известный производитель обуви доказал, что большая часть применяемого для производства подошв первичного сырья может быть заменена на резиновую пыль.
В лабораторных исследованиях проверялось, насколько изменяются физические свойства композиционных материалов при добавлении различного количества резиновой пыли:
Свойства продукции в зависимости от доли рециклата
Физические свойства смешанного с большим количеством резины композиционного материала соответствуют свойствам исходного материала аналогичного состава.
Материалы - заменители термопластов и эластомеров
Благодаря применению специальных технологий по соединению резиновой пыли с другими полимерными материалами мельчайшая пыль INTEC подходит для производства изделий, которые обладают как эластичными свойствами, так и свойствами эластомеров.
С помощью данной технологии из мельчайшей резиновой пыли (с ее типичными для резины эластичными свойствами) и термопластичных полимерных материалов производится композиционный материал.
Композиционный материал характеризуется так называемым внутрифазным образованием полимерной сетки и закупоркой компонентов.
Активную роль при образовании материала играет резиновая пыль благодаря реактивации отдельных полимерных фаз. Данная активация происходит по специальной технологии смешивания при добавлении определенных стабилизирующих веществ, образующих поперечные связи, а также благодаря особому технологическому этапу «динамической стабилизации».
Наряду с термопластичными и эластичными свойствами данный материал характеризуется хорошей способностью к переработке. Благодаря значительно меньшей цене по отношению к первичному сырью данная экономичная технология имеет конкурентное преимущество по отношению к материалам, которые до сих пор производятся из первичного сырья.
Благодаря техническим, экологическим и экономическим преимуществам данный материал может применяться как в обычных, так и в новых областях в качестве:
Заменителя для материалов со свойствами термопластов (термопласты) и материалов со свойствами эластомеров (эластомеры), а также материалов со свойствами термопластов и эластомеров
Сферы применения:
Автомобильная промышленность
Машиностроение
Надземное и подземное строительство
Сельское хозяйство и садоводство
Коммунальное хозяйство
Замена поливинилхлорида (ПВХ)
Необходимость замены обычных полимеров на другие материалы особенно видна на примере ПВХ.
ПВХ - термопластичный полимерный материал с очень широкими возможностями применения, который в последние десятилетия практически вне конкуренции применялся по всему миру в строительстве, автомобильной промышленности, в области производства напольных покрытий и готовых изделий. Одновременно ПВХ из-за своего химического состава является экологически опасным и трудным для переработки продуктом. При сжигании ПВХ выделяются ядовитые продукты расщепления (диоксин и соляная кислота).
Применение изделий из ПВХ уже запрещено в Голландии, Дании и с 1994 г. в Люксембурге.
В Швеции использование ПВХ должно быть прекращено к 2000 году. Изделия из ПВХ перестают пользоваться популярностью и в Германии. Опасность данного полимера стала ясна не только после пожара в 1996 году в аэропорту Дюссельдорфа. Большинство жертв тогда не сгорело, а задохнулось ядовитыми газами, которые выделяются вследствие горения использовавшегося в больших количествах при строительстве аэропорта ПВХ.
В общественных предписаниях применение ПВХ для строительства зданий и сооружений запрещено в Германии с 1995 г.
Продукция на основе ПВХ представлена, как и прежде, во всех областях жизни. Однако, несмотря на широкие возможности применения, в сложившихся обстоятельствах налаживать ее сбыт все труднее, поэтому на такие высококачественные материалы- заменители, как напр. „Elastomeric Alloys" на основе мельчайшей резиновой пыли Intec наблюдается чрезвычайно высокий и долгосрочный спрос.
Между тем, с помощью новых технологий удалось переработать каждый вид резиновых изделий в конечный продукт, сырье или источник энергии.
На данный момент, изношенные шины перерабатываются в больших количествах в резиновый гранулят, крошку и/или резиновую пыль. Производимая из них продукция, как, например изоляционные плиты, детали, эластичные маты и напольные покрытия, с успехом применяется уже много лет.
Резиновый гранулят (> 0,630 мм)
Компания INTEC разработала технологию изготовления дуропласта из резинового гранулята, полученного криогенным способом. С вяжущими веществами дуропласта могут соединяться до 95% резины, что дает возможность производить большое количество разнообразных изделий.
Для гранулята INTEC предлагает технологию производства спортивных напольных покрытий:
Область применения: теннисные, футбольные площадки, спортивные площадки для бадминтона, хоккея, бейсбола, американского футбола, площадки для бега и прыжков.
Данные изделия имеют следующие свойства:
Водопроницаемость
Высокая прочность в момент разрыва
Естественный изолятор
Сокращение расходов на содержание
Возможность эксплуатации при любых погодных условиях
Легко проводимые ремонтные работы
Также изделия из дуропласта на основе резинового гранулята могут применяться в сельском хозяйстве, строительстве, коммунальном хозяйстве.
Коммунальное хозяйство: элементы детских игровых площадок, велосипедные дорожки, напольные покрытия, спасательные маты.
Сельское хозяйство: животноводство, садоводчество, теплицы.
Строительство: дренажные маты, резина, изоляционные материалы, изоляционные материалы от ударного шума.
Произведенные из резинового гранулята и вяжущих веществ дуропласта стандартные изделия подвергаются жесткой конкуренции. Резиновый гранулят проигрывает в цене, т.к. возможности его технического применения ограничены, а предложение постоянно растет. Продажи при этом подвергаются сезонным колебаниям.
Резиновая крошка (0,1 мм - 10 мм)
Резиновая крошка, полученная в результате переработки изношенных автопокрышек, имеет многочисленные и перспективные области дальнейшего практического применения, что при эффективной организации маркетингового сопровождения безусловно обеспечит ее быструю и устойчивую реализацию на отечественном и зарубежном рынках, а также эффективное вовлечение в высокорентабельное производство конкурентно-способных изделий.
порошковая резина с размерами менее 0,1 мм используется при частичной замне ПВХ,различных добавок в полимерные смеси,производства термопластгранулятов и дуропластов.
порошковая резина с размерами частиц от 0,2 до 0,45 мм используется в качестве добавки (5...20%) в резиновые смеси для изготовления новых автомобильных покрышек, массивных шин и других резинотехнических изделий. Применение резинового порошка с высокоразвитой удельной поверхностью частиц (2500-3500 см. кв/г), получаемой при его механическом измельчении, повышает стойкость шин к изгибающим воздействиям и удару, увеличивая срок их эксплуатации;
порошковая резина с размерами частиц до 0,6 мм используется в качестве добавки (до 50...70%) при изготовлении резиновой обуви и других резинотехнических изделий. При этом свойства таких резин (прочность, деформируемость) практически не отличаются от свойств обычной резины, изготовленной из сырых каучуков;
порошковую резину с размерами частиц до 1,0 мм можно применять для изготовления композиционных кровельных материалов (рулонной кровли и резинового шифера), подкладок под рельсы, резинобитумных мастик, вулканизованных и не вулканизованных рулонных гидроизоляционных материалов;
порошковая резина с размерами частиц от 0,5 до 1,0 мм применяется в качестве добавки для модификации нефтяного битума в асфальтобетонных смесях, используемых при строительстве автомобильных дорог, которые улучшают их деформационные и фрикционные свойства. Такие добавки позволяют увеличить прочность покрытия дорог, а также их стойкость к удару, морозостойкость и стойкость к растрескиванию полотна при температурных перепадах. Объем дробленой резины в составе таких усовершенствованных покрытий должен составлять около 2% от массы минерального материала, т.е. 60...70 тонн на 1 км дорожного полотна. При этом срок эксплуатации дорожного полотна увеличивается в 1,5 - 2 раза.Такие порошки используются также в качестве сорбента для сбора сырой нефти и жидких нефтепродуктов с поверхности воды и почвы, для тампонирования нефтяных скважин, гидроизоляции зеленых пластов и т.д.;
резиновая крошка с размерами частиц от 2 до 10 мм используется при изготовлении массивных резиновых плит для комплектования трамвайных и железнодорожных переездов, отличающихся длительностью эксплуатации, хорошей атмосферостойкостью, пониженным уровнем шума и современным дизайном; спортивных площадок с удобным и безопасным покрытием; животноводческих помещений и т.д.
Резиновая пыль (0,315-0,630 мм)
Напольные покрытия из дуропласта и непрерывные резиновые ленты.
Для резиновой пыли размером 0,315-0,630 мм, произведенной криогенным методом, INTEC разработал технологию производства напольных покрытий из дуропласта и непрерывных резиновых лент.
Данные изделия могут быть произведены для средних, сильных и специальных нагрузок согласно требованиям DIN (Немецкие промышленные нормы). Возможно различное цветовое исполнение.
Напольные покрытия могут применяться в магазинах, выставочных залах, лабораториях, конференц-залах, ресторанах, кино, больницах, на вокзалах, жилых помещениях и т.д.
Непрерывные резиновые ленты применяются в строительстве в качестве изоляционного материала и лент для плоских крыш.
Соединение из дуропласта и резиновой пыли также может применяться в качестве тепло - и холодоизолятора, дренажных матов, звукоизоляционного материала и т.д.
Изделия из резиновой пыли и связующих веществ дуропласта равноценны материалам, произведенным из вторичного сырья, частично они даже превосходят их по своим свойствам и по сравнению с ними являются более дешевыми.
Использование резиновой пыли при производстве термопластов
Технология по переработке резиновой пыли в термопласты была разработана компанией INTEC. При этом резиновая пыль и термопласты перерабатываются на специальных машинах для термопласта в новый продукт, который может быть применен в следующих областях:
Промышленность: профиль, подошвы, резиновые сапоги, пластиковые формовочные детали, уплотнительные шпагаты.
Сельское хозяйство: поливочные шланги, газонные камни, контейнеры для семян, ящики для цветов, емкости для отходов, маты для конюшен.
Преимуществом при этом является экономия дорогого первичного сырья и способность конечного продукта к переработке.
Прочие технологии
Ряд поставщиков разработал биологические и химические технологии, которые должны осуществлять процесс повторной вулканизации резиновой пыли. В принципе, с помощью данных методов эта цель достижима, экономическое же применение их в промышленных условиях пока еще невозможно.
Биологическим методом предпринимаются попытки достичь девулканизации резиновой пыли (< 0,5 мм) с помощью серопоглощающих бактерий, при этом серные мостики внутри эластомерной матрицы и полимерная сетка разрушаются.
Прежние пилотные попытки были оценены положительно. Результаты опытов в промышленном масштабе еще только предстоит оценить. Т.к. резиновая пыль при биологической обработке должна быть разделена до частиц размером мельче 0,5 мм, данный способ с экономической точки зрения является нерентабельным.
Различные химические технологии с успехом применяются уже свыше 2 лет с участием нового реагента. Данный реагент является смесью биокатализаторов, который содержится среди других ускорителей. Эта смесь добавляется в резиновую пыль. Благодаря механической обработке происходит разрыхление серных цепочек, что влечет за собой деполимеризацию.
Мельчайшая резиновая пыль (< 0,315 мм)
Продукция, пользующаяся спросом в промышленности - это мельчайшая резиновая пыль с высокой степенью чистоты, которая в настоящее время не может быть предложена на рынке или может быть представлена в очень ограниченных количествах.
Это специальная мельчайшая резиновая пыль < 0.315 мм, делающая возможным замену первичного сырья. При этом удельная площадь поверхности частицы увеличена до размера, при котором значительно улучшаются ее адгезионные свойства.
Только подобная замена первичного сырья при производстве технических эластомеров может считаться непосредственно переработкой.
При этом применяются продукты переработки одного уровня стоимости относительно первичного сырья, являющиеся его прямыми конкурентами. Также требуется, чтобы данные продукты переработки имели подобные или лучшие технические свойства по сравнению с оригинальными.
До сих пор данное требование устанавливало границы применения резиновой пыли при производстве высококачественных эластомерных изделий, т.к. ранее на рынке отсутствовала мельчайшая резиновая пыль требуемого качества или присутствовала, но в ограниченных количествах
Поступающая в настоящее время в продажу резиновая пыль, произведенная преимущественно методом теплового измельчения, не обладает достаточной степенью чистоты и необходимым мелким размером частиц, что требуется для создания высококачественной продукции.
Однако именно данные свойства являются обязательным условием промышленных технологий. Так, в литьевой технологии (например, в автомобильной промышленности), может применяться исключительно мельчайшая резиновая пыль < 0,250 мм.
Компания INTEC благодаря применению оптимального размельчающего и сепарационного оборудования производит мельчайшую резиновую пыль в больших количествах размером частиц < 0.250 мм и тем самым делает возможным применение резиновой пыли для создания высококачественных эластомеров.
Изделия из эластомера, произведенные из мельчайшей резиновой пыли
Возможно производить переработку мельчайшей резиновой пыли в эластомерные изделия. Что открывает новые возможности применения мельчайшей резиновой пыли высокого качества и конкурентой стоимости. Преимуществом также является то, что данные эластомеры позднее могут быть вторично переработаны.
Возможные изделия из мельчайшей резиновой пыли:
Ленточные конвейеры
Шланги
Профили
Автомобильные детали
Изолирующие слои
Звукоизоляционные и виброзащитные
Покрытия кантов
Экструзионные изделия
Некоторые РТИ
DE-LINKTM-технология
С помощью механико-химической технологии при применении DE-LINKTM-реагента в вулканизированной резине происходит разрыхление сернистых соединений без существенных повреждений главной полимерной сетки.
DE-LINKTM-реагент - концентрат высокоактивных, нетоксичных химикатов, обеспечивающий его надежное и экологичное применение. В результате данной девулканизации образуется композиционный материал, полученный в ходе рециклинга, со свойствами, подобными резине, реализуемый на рынке под маркой DE-VULKд.
Компания INTEC совместно с фирмой «STI-K Polymers», держателем патента международно известной DE-LINKд - технологии, запатентированной в 55 странах, ведет совместную стратегическую работу на договорной основе и имеет эксклюзивные права на продажу.
В процессе совместной исследовательской деятельности компании INTEC и «STI-K Polymers» протестировали применение криогенной мельчайшей резиновой пыли вместо применявшегося до сих пор резинового гранулята.
Благодаря высокой степени чистоты резиновой пыли INTEC в результате вулканизации с применением DE-LINKд-реагента образуется высококачественный композиционный материал, сохраняющий более чем 90% первоначальных свойств резины. Данный уникальный качественный продукт, полученный в ходе рециклинга резины, может быть переработан в эластомерные изделия, использоваться в качестве заменителя первичного сырья или вулканизирован обычным способом. Новый, высококачественный композиционный материал существенно расширяет сферы его применения и создает новые возможности развития продукции.
Для осуществления данной цели компания INTEC и «STI-K Polymers» совместно с Институтом синтетической резины им. Лебедева (Санкт-Петербург), тесно сотрудничая, продолжают совместные исследования и разработки в данной области.
Применение резиновой пыли Intec, произведенной криогенным способом, совместно с DE-LINKTM-технологией открывает абсолютно новую эру переработки изношенной резины и экономически рентабельного производства высококачественных изделий с широкими сферами их применения.
Замена первичного сырья на эластомерные смеси
Последующая химическая обработка резиновой частицы делает возможным замену большого количества содержащегося в эластомерных соединениях первичного сырья на резиновую пыль без изменений физических параметров.
До сегодняшнего дня резиновая пыль могла быть примешена к композиционным материалам в качестве наполнителя, не ухудшая их физических свойств, только в количестве 5-10%.
Только благодаря развитию новой технологии химической переработки удалось производить полимеры из резиновой пыли, которые могут применяться не только как наполнители, но и как материалы, равноценные первичному сырью. Одновременно мельчайшая пыль INTEC ввиду свойств ее частиц и высокой степени чистоты от примесей допускает дальнейшее расширение возможностей замены при постоянно растущем качестве продукции.
Возможности замены первичного сырья на мельчайшую резиновую пыль существуют практически для всех эластомерных изделий.
Первичное сырье в зависимости от цели применения продукта может быть заменено до 90%. Чем выше степень замены первичного сырья на резиновую пыль, тем соответственно ниже расходы.
Применение в обувной промышленности
Известный производитель обуви доказал, что большая часть применяемого для производства подошв первичного сырья может быть заменена на резиновую пыль.
В лабораторных исследованиях проверялось, насколько изменяются физические свойства композиционных материалов при добавлении различного количества резиновой пыли:
Свойства продукции в зависимости от доли рециклата
Физические свойства смешанного с большим количеством резины композиционного материала соответствуют свойствам исходного материала аналогичного состава.
Материалы - заменители термопластов и эластомеров
Благодаря применению специальных технологий по соединению резиновой пыли с другими полимерными материалами мельчайшая пыль INTEC подходит для производства изделий, которые обладают как эластичными свойствами, так и свойствами эластомеров.
С помощью данной технологии из мельчайшей резиновой пыли (с ее типичными для резины эластичными свойствами) и термопластичных полимерных материалов производится композиционный материал.
Композиционный материал характеризуется так называемым внутрифазным образованием полимерной сетки и закупоркой компонентов.
Активную роль при образовании материала играет резиновая пыль благодаря реактивации отдельных полимерных фаз. Данная активация происходит по специальной технологии смешивания при добавлении определенных стабилизирующих веществ, образующих поперечные связи, а также благодаря особому технологическому этапу «динамической стабилизации».
Наряду с термопластичными и эластичными свойствами данный материал характеризуется хорошей способностью к переработке. Благодаря значительно меньшей цене по отношению к первичному сырью данная экономичная технология имеет конкурентное преимущество по отношению к материалам, которые до сих пор производятся из первичного сырья.
Благодаря техническим, экологическим и экономическим преимуществам данный материал может применяться как в обычных, так и в новых областях в качестве:
Заменителя для материалов со свойствами термопластов (термопласты) и материалов со свойствами эластомеров (эластомеры), а также материалов со свойствами термопластов и эластомеров
Сферы применения:
Автомобильная промышленность
Машиностроение
Надземное и подземное строительство
Сельское хозяйство и садоводство
Коммунальное хозяйство
Замена поливинилхлорида (ПВХ)
Необходимость замены обычных полимеров на другие материалы особенно видна на примере ПВХ.
ПВХ - термопластичный полимерный материал с очень широкими возможностями применения, который в последние десятилетия практически вне конкуренции применялся по всему миру в строительстве, автомобильной промышленности, в области производства напольных покрытий и готовых изделий. Одновременно ПВХ из-за своего химического состава является экологически опасным и трудным для переработки продуктом. При сжигании ПВХ выделяются ядовитые продукты расщепления (диоксин и соляная кислота).
Применение изделий из ПВХ уже запрещено в Голландии, Дании и с 1994 г. в Люксембурге.
В Швеции использование ПВХ должно быть прекращено к 2000 году. Изделия из ПВХ перестают пользоваться популярностью и в Германии. Опасность данного полимера стала ясна не только после пожара в 1996 году в аэропорту Дюссельдорфа. Большинство жертв тогда не сгорело, а задохнулось ядовитыми газами, которые выделяются вследствие горения использовавшегося в больших количествах при строительстве аэропорта ПВХ.
В общественных предписаниях применение ПВХ для строительства зданий и сооружений запрещено в Германии с 1995 г.
Продукция на основе ПВХ представлена, как и прежде, во всех областях жизни. Однако, несмотря на широкие возможности применения, в сложившихся обстоятельствах налаживать ее сбыт все труднее, поэтому на такие высококачественные материалы- заменители, как напр. „Elastomeric Alloys" на основе мельчайшей резиновой пыли Intec наблюдается чрезвычайно высокий и долгосрочный спрос.
Применение резины
Резина используется в производстве автомобильных шин и резино-технических изделий.
Изделия из резины в промышленности (производстве).
Для получения прорезиненных тканей берут льняную или или бумажную ткань и резиновый клей, представляющий резиновую смесь, растворенную в бензине или бензоле. Клей тщательно и равномерно размазывают и впрессовывают в ткань; после просушки и испарения растворителя получают прорезиненую ткань.
Для изговоления прокладочного материала, способного выдерживать высокие температуры, применяют паронит, представляющий резиновую смесь, в которую введено асбестовое волокно. Такую смесь смешивают с бензином, пропускают через вальцы и вулканизируют в виде листов толщиной от 0,2 до 6 мм.
Для получения резиновых трубок резину пропускают через шприц-машину, где сильно разогретая (до 100-110°) смесь продавливается через головку необходимого диаметра. В результате получают трубку, которую подвергают вулканизации.
Изготовление дюритовых рукавов происходит следующим образом: из каландрированной резины вырезают полосы и накладывают их на металлический сердечник, у которого наружный диаметр равен внутреннему диаметру рукава. Края полос смазывают резиновым клеем и прикатывают роликом. затем накладывают один или несколько слоев ткани и промазывают их резиновым клеем, а сверху накладывают слой резины. После этого собранный рукав подвергают вулканизации.
Автомобильные камеры изготовляют из резиновых труб, шприцованных или склеенных вдоль камеры. Существует два способа изготовления камер: формовый и дорновый. Дорновые камеры вулканизируют на металлических или изогнутых дорнах. Эти камеры имеют одн или два поперечных стыка. После стыкования, камеры в месте стыка подвергают вулканизации.
При формовом способе, камеры вулканизируют в индивидуальных вулканизаторах, снабженных автоматическим регулятором температурыю Чтобы избежать склеевания стенок, внутрь камеры вводят тальк.
Автомобильные покрышки собирают на специальных станках из нескольких слоев особой ткани (корд), покрытой резиновым слоем. Тканевый каркас, т.е. скелет шины, тщательно прикатывают, а кромки слоев ткани заворачивают. Снаружи каркас покрывают в беговой части толстым слоем резины, называемым протектором, а на боковины накладывают более тонкий слой резны. Подготовленную таким образом шину подвергают вулканизации.
Резиновая промышленность - один из важнейших поставщиков комплектующих деталей и изделий для многих отраслей народного хозяйства. Резина - незаменимый материал в производстве шин, различных амортизаторов и уплотнителей. Резину применяют также для изготовления конвейерных лент, приводных ремней, рукавов, разнообразных изделий бытового назначения. Из резины производят изоляцию кабелей, эластичные электропроводящие покрытия и многое другое. Наиболее крупные потребители резины - шинная промышленность и промышленность резинотехнических изделий.
Изделия из резины в промышленности (производстве).
Для получения прорезиненных тканей берут льняную или или бумажную ткань и резиновый клей, представляющий резиновую смесь, растворенную в бензине или бензоле. Клей тщательно и равномерно размазывают и впрессовывают в ткань; после просушки и испарения растворителя получают прорезиненую ткань.
Для изговоления прокладочного материала, способного выдерживать высокие температуры, применяют паронит, представляющий резиновую смесь, в которую введено асбестовое волокно. Такую смесь смешивают с бензином, пропускают через вальцы и вулканизируют в виде листов толщиной от 0,2 до 6 мм.
Для получения резиновых трубок резину пропускают через шприц-машину, где сильно разогретая (до 100-110°) смесь продавливается через головку необходимого диаметра. В результате получают трубку, которую подвергают вулканизации.
Изготовление дюритовых рукавов происходит следующим образом: из каландрированной резины вырезают полосы и накладывают их на металлический сердечник, у которого наружный диаметр равен внутреннему диаметру рукава. Края полос смазывают резиновым клеем и прикатывают роликом. затем накладывают один или несколько слоев ткани и промазывают их резиновым клеем, а сверху накладывают слой резины. После этого собранный рукав подвергают вулканизации.
Автомобильные камеры изготовляют из резиновых труб, шприцованных или склеенных вдоль камеры. Существует два способа изготовления камер: формовый и дорновый. Дорновые камеры вулканизируют на металлических или изогнутых дорнах. Эти камеры имеют одн или два поперечных стыка. После стыкования, камеры в месте стыка подвергают вулканизации.
При формовом способе, камеры вулканизируют в индивидуальных вулканизаторах, снабженных автоматическим регулятором температурыю Чтобы избежать склеевания стенок, внутрь камеры вводят тальк.
Автомобильные покрышки собирают на специальных станках из нескольких слоев особой ткани (корд), покрытой резиновым слоем. Тканевый каркас, т.е. скелет шины, тщательно прикатывают, а кромки слоев ткани заворачивают. Снаружи каркас покрывают в беговой части толстым слоем резины, называемым протектором, а на боковины накладывают более тонкий слой резны. Подготовленную таким образом шину подвергают вулканизации.
Резиновая промышленность - один из важнейших поставщиков комплектующих деталей и изделий для многих отраслей народного хозяйства. Резина - незаменимый материал в производстве шин, различных амортизаторов и уплотнителей. Резину применяют также для изготовления конвейерных лент, приводных ремней, рукавов, разнообразных изделий бытового назначения. Из резины производят изоляцию кабелей, эластичные электропроводящие покрытия и многое другое. Наиболее крупные потребители резины - шинная промышленность и промышленность резинотехнических изделий.
Переработка резиновой крошки и отходов пластмасс.
Путем переработки резиновой крошки и отходов пластмасс могут производиться - плита дорожная и тротуарная, другие изделия сложной трехмерной формы с высокой атмосферо- и износостойкостью, стойкостью к реагентам (вода, соль, бензин, масла), рулонный гидроизоляционный материал, "гибкая" кровля.
Требуемое сырье и материалы
Исходным материалом для получения РНП служат отходы резины (крошка изношенных шин), а в качестве полимерного связующего применяются термопласты (полиэтилен, полипропилен) и их отходы.
Требования к производственному помещению линии для выпуска изделий из РНП в объеме 1800 т/год или 57000 м2/год тротуарной плитки
1.помещение категории Д, t0=16-18°C, W=60%
2.площадь 650-800 м2
3.полезная высота 12 м
4.установленная мощность =300 кВт.ч.
Краткое описание
Проведенные исследования, а также отработка технологий в опытном производстве позволили разработать экономически эффективные методы супернаполнения полимеров, основанные на управлении адгезионной активностью расплава полимеров и микрокапсулировании частиц наполнителя. Разработанные методы обеспечивают возможность создания композитов с широкой гаммой полезных потребительских свойств, используя универсальное дешевое сырье (отходы резины и пластика).
Производство изделий из РНП осуществляется прессованием или вальцеванием.
Производство изделий из РНП состоит из следующих стадий:
a.подготовка резиновых отходов;
b.подготовка полимера;
c.получение композиций;
d.переработка композиций в изделия.
Комплектация производства осуществляется на базе стандартизированного оборудования по переработке пластмасс при незначительном объеме нестандартного оборудования.
Преимущества производимых РНП:
1.универсальность допускаемой сырьевой базы, проявляющаяся в возможности использовать в качестве наполнителя различные виды резиновых отходов без процесса регенерации, а также вторичные полимерные материалы (полимерные отходы);
2.высокая степень наполнения отходами резины (до 70% по массе);
3.технология переработки РНП позволяет получать готовые изделия сложной трехмерной формы;
4.изделия из РНП обладают экологической чистотой, практически нулевым водопоглощением. Изделия биологически стойки - не разрушаются бактериями, грибком, термитами, прекрасно поддаются механической обработке, стойки к вибрационным и статическим нагрузкам грузового транспорта.
5.изделия из РНП в 2,5 раза легче аналогичных изделий из бетона, характеризуются высокой мобильностью укладки и демонтажа;
6.освоение технологии РНП позволяет с минимальными дополнительными инвестициями организовать производство изделий из древесно- и минералонаполненных пластмасс с использованием как первичных пластмасс, так и их отходов и тем самым диверсифицировать производство и сделать его максимально независимым от конъюнктуры рынка.
Окупаемость проекта
2.25 - 3.0 года в зависимости от номенклатуры выпускаемых изделий, рынка сбыта и конъюнктуры.
Требуемое сырье и материалы
Исходным материалом для получения РНП служат отходы резины (крошка изношенных шин), а в качестве полимерного связующего применяются термопласты (полиэтилен, полипропилен) и их отходы.
Требования к производственному помещению линии для выпуска изделий из РНП в объеме 1800 т/год или 57000 м2/год тротуарной плитки
1.помещение категории Д, t0=16-18°C, W=60%
2.площадь 650-800 м2
3.полезная высота 12 м
4.установленная мощность =300 кВт.ч.
Краткое описание
Проведенные исследования, а также отработка технологий в опытном производстве позволили разработать экономически эффективные методы супернаполнения полимеров, основанные на управлении адгезионной активностью расплава полимеров и микрокапсулировании частиц наполнителя. Разработанные методы обеспечивают возможность создания композитов с широкой гаммой полезных потребительских свойств, используя универсальное дешевое сырье (отходы резины и пластика).
Производство изделий из РНП осуществляется прессованием или вальцеванием.
Производство изделий из РНП состоит из следующих стадий:
a.подготовка резиновых отходов;
b.подготовка полимера;
c.получение композиций;
d.переработка композиций в изделия.
Комплектация производства осуществляется на базе стандартизированного оборудования по переработке пластмасс при незначительном объеме нестандартного оборудования.
Преимущества производимых РНП:
1.универсальность допускаемой сырьевой базы, проявляющаяся в возможности использовать в качестве наполнителя различные виды резиновых отходов без процесса регенерации, а также вторичные полимерные материалы (полимерные отходы);
2.высокая степень наполнения отходами резины (до 70% по массе);
3.технология переработки РНП позволяет получать готовые изделия сложной трехмерной формы;
4.изделия из РНП обладают экологической чистотой, практически нулевым водопоглощением. Изделия биологически стойки - не разрушаются бактериями, грибком, термитами, прекрасно поддаются механической обработке, стойки к вибрационным и статическим нагрузкам грузового транспорта.
5.изделия из РНП в 2,5 раза легче аналогичных изделий из бетона, характеризуются высокой мобильностью укладки и демонтажа;
6.освоение технологии РНП позволяет с минимальными дополнительными инвестициями организовать производство изделий из древесно- и минералонаполненных пластмасс с использованием как первичных пластмасс, так и их отходов и тем самым диверсифицировать производство и сделать его максимально независимым от конъюнктуры рынка.
Окупаемость проекта
2.25 - 3.0 года в зависимости от номенклатуры выпускаемых изделий, рынка сбыта и конъюнктуры.
вторник, 2 июня 2009 г.
Классификация резин в РФ.
В отечественной практике различают следующие основные группы и типы резин по назначению:
По группам:
Общего назначения, Специального назначения, в том числе:
теплостойкие, морозостойкие, маслобензостойкие, стойкие к действию химически агрессивных сред, в том числе стойкие к гидравлическим жидкостям, диэлектрические,
электропроводящие, в том числе антистатические, магнитные, огнестойкие, радиационностойкие, вакуумные, фрикционные (износостойкие*), пищегого и медицинского назначения, для условий тропического и другого климата
По типам:
получают также
пористые, или губчатые цветные и прозрачные резины.
Состав резиновой смеси определяет свойства резинотехнических изделий (РТИ).
Резиновые смеси выпускаются в невулканизированном виде вальцованными или калдандрованными:
- вальцованные - в виде листов размером (500х700) мм, толщиной от 6 до 10 мм, масса одного упаковочного места от 30 до 50 кг.;
-каландрованные - в виде резинового полотна, намотанного в рулон: толщина каландрованного полотна - от 1,0 до 4,0 мм, ширина каландрованного полотна - от 500 до 1200 мм, масса рулона от 40до 60 кг.
Смеси резиновые невулканизированные предназначены для изготовления резиновых технических деталей.
Твердые резиновые смеси
а - мягкие, твердость - 30 50 ед. Шор А;
б - твердые, твердость 55-70 ед. Шор А;
в - повышенной твердости, твердость 75-95 ед. Шор А.
В отечественной практике различают следующие основные группы и типы резин по назначению:
По группам:
Общего назначения, Специального назначения, в том числе:
теплостойкие, морозостойкие, маслобензостойкие, стойкие к действию химически агрессивных сред, в том числе стойкие к гидравлическим жидкостям, диэлектрические,
электропроводящие, в том числе антистатические, магнитные, огнестойкие, радиационностойкие, вакуумные, фрикционные (износостойкие*), пищегого и медицинского назначения, для условий тропического и другого климата
По типам:
получают также
пористые, или губчатые цветные и прозрачные резины.
Состав резиновой смеси определяет свойства резинотехнических изделий (РТИ).
Резиновые смеси выпускаются в невулканизированном виде вальцованными или калдандрованными:
- вальцованные - в виде листов размером (500х700) мм, толщиной от 6 до 10 мм, масса одного упаковочного места от 30 до 50 кг.;
-каландрованные - в виде резинового полотна, намотанного в рулон: толщина каландрованного полотна - от 1,0 до 4,0 мм, ширина каландрованного полотна - от 500 до 1200 мм, масса рулона от 40до 60 кг.
Смеси резиновые невулканизированные предназначены для изготовления резиновых технических деталей.
Твердые резиновые смеси
а - мягкие, твердость - 30 50 ед. Шор А;
б - твердые, твердость 55-70 ед. Шор А;
в - повышенной твердости, твердость 75-95 ед. Шор А.
История резины
Резина и изделия из нее прочно вошли в наш обиход: они востребованы в быту, медицине, практически во всех отраслях промышленности – всего и не перечислить. Но история появления в нашей жизни, казалось бы, естественной и хорошо знакомой резины не так проста, как это может показаться на первый взгляд. В общем, «история резины» - это история проникновения и освоения европейским сообществом каучука.
Начало этой истории относится к тому времени, когда Колумб в экзотической тогда Америке увидел индейцев, играющих в мяч, довольно тяжелый, из черной массы, прыгающий намного лучше кожаных европейских мячей. Секрет изготовления этих мячей заключался в обнаруженных индейцами интересных свойствах каучуконосных деревьев, которые растут в странах с тропическим климатом – Индонезии, Индии, на Цейлоне, в Бразилии. Наиболее распространена бразильская гевея, ее высота – 30 метров, в обхвате – 3,5 метра. При надрезе ее коры выступает белый млечный сок, латекс. Если его собрать побольше и подержать на солнце, то получится желтоватая масса, тягучая и немного липкая. Еще несколько манипуляций – и индейцы использовали природный каучук и для развлечений, и для бытовых нужд: делали из него бутылки, промазывали пироги, некоторые индейцы покрывали ноги этой массой и держали над костром, было больно, но зато индеец получал на всю жизнь пару непромокаемых чулок. Аборигены Америки нашли применение на практике не только непромокаемости и упругости каучука, но и его клейкости: птичьи перья для украшения они приклеивали к телу именно каучуком.
Следующий этап – путешествие по Южной Америке французского путешественника Ш. Кондамина, который второй раз открыл каучук. Именно с 1738 года обычно ведут историю натурального каучука, когда Кондамин представил в АН в Париже образцы каучука и описание способов его добычи. К сожалению, значительных практических результатов этот доклад не дал: привезенные образцы высохли и затвердели. Тогда каучук сумели использовать только для одного дела – стирания карандашных записей. Таким образом, ластик – это первая вещь, сделанная в Европе из каучука.
Прошло еще 80 лет. Ч. Макинтош искал способ вернуть высохшему каучуку природные свойства. Совершенно случайно он пролил на образец каучука солвент-нафта (вещество, добываемое из каменноугольной смолы). Макинтош пропитал каучуком плотную материю, и она стала непромокаемой. Так появились первые плащи-макинтоши, а потом и первые галоши, и сумки для перевозки почты. Правда, потом стал очевиден большой недостаток всей этой продукции, делавший ее совершенно непригодной: в сильную жару материал становился слишком мягким, а в холодную погоду затвердевал, как камень.
1839 год. Америка. Ч. Гудьир искал способ сделать каучук нечувствительным к изменениям температуры. Многократные опыты требовали денег, и в итоге исследователь оказался в долговой тюрьме; именно там, продолжая опыты, он обнаружил, что липкость исчезает, если посыпать каучук серой и высушить его. Уже выйдя из тюрьмы, Гудьир, опять же по рассеянности, положил кусочек каучука с серой не на стол, а на горячую плиту. Ошибка оказалась открытием, потому что на плите Гудьир обнаружил не липкую смесь, а сухой мягкий упругий кусок… уже резины. Под действием серы при умеренном нагревании каучук приобретал большую прочность, твердость, становился менее чувствительным к переменам температуры. Процесс назвали вулканизацией, а вулканизированный каучук – резиной. Изделия из резины начали быстро завоевывать рынок, а в конце 19 века в период повсеместной электрификации резина стала использоваться и как хороший изолятор.
Все больше и больше требовалось резины. Разрастались огромные плантации гевеи в Южной Америке и Индонезии. Примерно в то же время один предприимчивый англичанин тайком вывез из Бразилии 70 тыс. семян гевеи, но прижились они только в одном месте – на Цейлонских островах, принадлежавших тогда Англии. На мировом рынке каучука появились два крупных монополиста, и стало ясно: природный каучук не экономичен и не рентабелен, необходимо обнаружить способ получения искусственного каучука. Дальнейшая история освоения резины – это история химических исследований, в основном, российской химической науки.
В России резиновая промышленность возникла в первой половине 19 века. До революции резиновое производство было представлено 4-мя предприятиями: «Треугольник», «Проводник» и сравнительно небольшими заводами «Богатырь» и «Каучук». В 1913 году на них работало 23 тыс. человек и выпускали они главным образом обувь; сырье и оборудование были заграничными, техническое руководство осуществляли иностранцы. Мало кто знает, что производство туалетной губки являлось в 19 веке секретом завода «Треугольник»; как ни странно, этот незамысловатый предмет был наиболее конкурентоспособным резиновым изделием на мировом рынке. После Октябрьской революции резиновая промышленность представляла достаточно мощную отрасль. Был взят общий курс на индустриализацию, а потому резко возросла потребность в комплектующих резинотехнических изделиях. Но производство резины находилось в исключительной зависимости от импорта натурального каучука. Существовало два возможных варианта решения проблемы. Первый - изыскание каучуконосов, пригодных для разведения в районах с умеренным климатом. В СССР этим занимался Н. И. Вавилов, в США инициаторами этих работ были Т. Эдисон и Г. Форд.
Второй вариант – создание синтетического каучука. Химические исследования состава каучука начались еще с опытов М. Фарадея в 1826 году. В 1879 А. Бушард наблюдал превращение изопрена в каучукоподобную массу, а в 1910 – И. Л. Кондаков подобное превращение диметилбутадиена. В 1909 г. Сергей Васильевич Лебедев показал вещество, близкое к каучуку, приготовленное из дивинила – бесцветного летучего газа. Но после долгих трудов ему удалось добыть всего лишь 19 граммов. В России в том же направлении работал И. И. Остромысленский, проводя опыты на заводе «Богатырь», в Германии – К. Гарриес, в Англии – Ф. Мэтьюс и Е. Стрейкедж. Таким образом, наука шла по стопам природы: сначала надо было получить полимер диеновых углеводородов, а затем синтезировать из них каучук.
В 1926 году Советское правительство объявило всемирный конкурс на производство искусственного каучука, причем выдвигались 3 условия: 1) сырье должно быть дешевым; 2) качество не хуже натурального; 3) срок до представления результатов разработок – 2 года. В мае 1928 года этот конкурс выиграл С. В. Лебедев. В качестве сырья он использовал обыкновенный картофель, из которого получал спирт, а уже из спирта – дивинил. Причем еще два года назад из 1 л спирта он получал 5 гр дивинила, а сейчас - 50 гр, тем самым сокращая расходы в 10 раз. Но этот безусловный прорыв не решал проблему, так как, например, на изготовление одной автомобильной шины уходило 500 кг картофеля. Потом ученые, усовершенствовав изобретение С. В. Лебедева, стали добывать дивинил из природных газов. И уже в 1929 году правительство приняло решение строить в Ленинграде опытный завод по получению синтетического каучука из спирта по методу Лебедева и еще два завода, которые должны были опробовать другие известные методы: Б. В. Бызова и группы ученых под руководством А. Л. Клебанского. 15 февраля 1931 года газеты всего мира сообщили, что в СССР выпущена первая большая партия искусственного каучука. Ни Германия, ни Англия на тот момент не были готовы предложить свой вариант решения этой промышленной проблемы. Интересно, что Т. Эдисон в своем интервью так оценил это событие: «Известие о том, что Советы достигли успехов в производстве синтетического каучука из нефти, невероятно. Этого нельзя сделать. Я бы даже сказал больше: весь этот отчет является фальшивкой. На основании моего собственного опыта и опыта других сейчас нельзя сказать, что получение синтетического каучука вообще когда-нибудь будет успешным». И тем не менее, уже в 1932 году в Ярославле дал продукцию первый завод синтетического каучука.
С 1951 года началось производство каучука из нефтяных газов и продуктов переработки нефти. Долгое время искусственный каучук, превосходя настоящий по отдельным показателям (температурный диапазон, прочность, химическая стойкость), уступал в одном – в эластичности (что очень важно для, например, автомобильных и авиационных шин), но и эта проблема была решена.
Таким образом, и природный дар – дерево гевея, и ряд случайностей, и долгий кропотливый труд ученых сделали резину одним из самых необходимых и универсальных материалов, востребованным каждый день, в самых разных ситуациях, в самых разных сферах деятельности человека.
Начало этой истории относится к тому времени, когда Колумб в экзотической тогда Америке увидел индейцев, играющих в мяч, довольно тяжелый, из черной массы, прыгающий намного лучше кожаных европейских мячей. Секрет изготовления этих мячей заключался в обнаруженных индейцами интересных свойствах каучуконосных деревьев, которые растут в странах с тропическим климатом – Индонезии, Индии, на Цейлоне, в Бразилии. Наиболее распространена бразильская гевея, ее высота – 30 метров, в обхвате – 3,5 метра. При надрезе ее коры выступает белый млечный сок, латекс. Если его собрать побольше и подержать на солнце, то получится желтоватая масса, тягучая и немного липкая. Еще несколько манипуляций – и индейцы использовали природный каучук и для развлечений, и для бытовых нужд: делали из него бутылки, промазывали пироги, некоторые индейцы покрывали ноги этой массой и держали над костром, было больно, но зато индеец получал на всю жизнь пару непромокаемых чулок. Аборигены Америки нашли применение на практике не только непромокаемости и упругости каучука, но и его клейкости: птичьи перья для украшения они приклеивали к телу именно каучуком.
Следующий этап – путешествие по Южной Америке французского путешественника Ш. Кондамина, который второй раз открыл каучук. Именно с 1738 года обычно ведут историю натурального каучука, когда Кондамин представил в АН в Париже образцы каучука и описание способов его добычи. К сожалению, значительных практических результатов этот доклад не дал: привезенные образцы высохли и затвердели. Тогда каучук сумели использовать только для одного дела – стирания карандашных записей. Таким образом, ластик – это первая вещь, сделанная в Европе из каучука.
Прошло еще 80 лет. Ч. Макинтош искал способ вернуть высохшему каучуку природные свойства. Совершенно случайно он пролил на образец каучука солвент-нафта (вещество, добываемое из каменноугольной смолы). Макинтош пропитал каучуком плотную материю, и она стала непромокаемой. Так появились первые плащи-макинтоши, а потом и первые галоши, и сумки для перевозки почты. Правда, потом стал очевиден большой недостаток всей этой продукции, делавший ее совершенно непригодной: в сильную жару материал становился слишком мягким, а в холодную погоду затвердевал, как камень.
1839 год. Америка. Ч. Гудьир искал способ сделать каучук нечувствительным к изменениям температуры. Многократные опыты требовали денег, и в итоге исследователь оказался в долговой тюрьме; именно там, продолжая опыты, он обнаружил, что липкость исчезает, если посыпать каучук серой и высушить его. Уже выйдя из тюрьмы, Гудьир, опять же по рассеянности, положил кусочек каучука с серой не на стол, а на горячую плиту. Ошибка оказалась открытием, потому что на плите Гудьир обнаружил не липкую смесь, а сухой мягкий упругий кусок… уже резины. Под действием серы при умеренном нагревании каучук приобретал большую прочность, твердость, становился менее чувствительным к переменам температуры. Процесс назвали вулканизацией, а вулканизированный каучук – резиной. Изделия из резины начали быстро завоевывать рынок, а в конце 19 века в период повсеместной электрификации резина стала использоваться и как хороший изолятор.
Все больше и больше требовалось резины. Разрастались огромные плантации гевеи в Южной Америке и Индонезии. Примерно в то же время один предприимчивый англичанин тайком вывез из Бразилии 70 тыс. семян гевеи, но прижились они только в одном месте – на Цейлонских островах, принадлежавших тогда Англии. На мировом рынке каучука появились два крупных монополиста, и стало ясно: природный каучук не экономичен и не рентабелен, необходимо обнаружить способ получения искусственного каучука. Дальнейшая история освоения резины – это история химических исследований, в основном, российской химической науки.
В России резиновая промышленность возникла в первой половине 19 века. До революции резиновое производство было представлено 4-мя предприятиями: «Треугольник», «Проводник» и сравнительно небольшими заводами «Богатырь» и «Каучук». В 1913 году на них работало 23 тыс. человек и выпускали они главным образом обувь; сырье и оборудование были заграничными, техническое руководство осуществляли иностранцы. Мало кто знает, что производство туалетной губки являлось в 19 веке секретом завода «Треугольник»; как ни странно, этот незамысловатый предмет был наиболее конкурентоспособным резиновым изделием на мировом рынке. После Октябрьской революции резиновая промышленность представляла достаточно мощную отрасль. Был взят общий курс на индустриализацию, а потому резко возросла потребность в комплектующих резинотехнических изделиях. Но производство резины находилось в исключительной зависимости от импорта натурального каучука. Существовало два возможных варианта решения проблемы. Первый - изыскание каучуконосов, пригодных для разведения в районах с умеренным климатом. В СССР этим занимался Н. И. Вавилов, в США инициаторами этих работ были Т. Эдисон и Г. Форд.
Второй вариант – создание синтетического каучука. Химические исследования состава каучука начались еще с опытов М. Фарадея в 1826 году. В 1879 А. Бушард наблюдал превращение изопрена в каучукоподобную массу, а в 1910 – И. Л. Кондаков подобное превращение диметилбутадиена. В 1909 г. Сергей Васильевич Лебедев показал вещество, близкое к каучуку, приготовленное из дивинила – бесцветного летучего газа. Но после долгих трудов ему удалось добыть всего лишь 19 граммов. В России в том же направлении работал И. И. Остромысленский, проводя опыты на заводе «Богатырь», в Германии – К. Гарриес, в Англии – Ф. Мэтьюс и Е. Стрейкедж. Таким образом, наука шла по стопам природы: сначала надо было получить полимер диеновых углеводородов, а затем синтезировать из них каучук.
В 1926 году Советское правительство объявило всемирный конкурс на производство искусственного каучука, причем выдвигались 3 условия: 1) сырье должно быть дешевым; 2) качество не хуже натурального; 3) срок до представления результатов разработок – 2 года. В мае 1928 года этот конкурс выиграл С. В. Лебедев. В качестве сырья он использовал обыкновенный картофель, из которого получал спирт, а уже из спирта – дивинил. Причем еще два года назад из 1 л спирта он получал 5 гр дивинила, а сейчас - 50 гр, тем самым сокращая расходы в 10 раз. Но этот безусловный прорыв не решал проблему, так как, например, на изготовление одной автомобильной шины уходило 500 кг картофеля. Потом ученые, усовершенствовав изобретение С. В. Лебедева, стали добывать дивинил из природных газов. И уже в 1929 году правительство приняло решение строить в Ленинграде опытный завод по получению синтетического каучука из спирта по методу Лебедева и еще два завода, которые должны были опробовать другие известные методы: Б. В. Бызова и группы ученых под руководством А. Л. Клебанского. 15 февраля 1931 года газеты всего мира сообщили, что в СССР выпущена первая большая партия искусственного каучука. Ни Германия, ни Англия на тот момент не были готовы предложить свой вариант решения этой промышленной проблемы. Интересно, что Т. Эдисон в своем интервью так оценил это событие: «Известие о том, что Советы достигли успехов в производстве синтетического каучука из нефти, невероятно. Этого нельзя сделать. Я бы даже сказал больше: весь этот отчет является фальшивкой. На основании моего собственного опыта и опыта других сейчас нельзя сказать, что получение синтетического каучука вообще когда-нибудь будет успешным». И тем не менее, уже в 1932 году в Ярославле дал продукцию первый завод синтетического каучука.
С 1951 года началось производство каучука из нефтяных газов и продуктов переработки нефти. Долгое время искусственный каучук, превосходя настоящий по отдельным показателям (температурный диапазон, прочность, химическая стойкость), уступал в одном – в эластичности (что очень важно для, например, автомобильных и авиационных шин), но и эта проблема была решена.
Таким образом, и природный дар – дерево гевея, и ряд случайностей, и долгий кропотливый труд ученых сделали резину одним из самых необходимых и универсальных материалов, востребованным каждый день, в самых разных ситуациях, в самых разных сферах деятельности человека.
Мембранное покрытие на основе жидкой резины
Мембранное покрытие на основе жидкой резины - это техническое достижение в гидроизоляции и защите от коррозии. Данная система холодного нанесения распылением и покрытие были разработаны для решения проблем, возникающих при использовании обычных мембранных систем.
Напыляемое и уже затвердевшее покрытие образует бесшовное, стопроцентное соединение с поверхностью и исключает проблемы, связанные с загрязнением окружающей среды, которые часто встречаются при использовании обычных систем покрытия. К тому же сокращаются расходы на оплату труда рабочих: бригада из трех человек может нанести на хорошо подготовленную поверхность примерно от 800 до 1400 м2 покрытия в течение одного рабочего дня.
Для большинства существующих методов покрытия (гидроизоляции) требуются швы или соединительные детали, а также механические или химические технологии крепления, которые обычно становятся причинами дефекта мембраны. В сравнении с ними гидроизоляция на основе жидкой резины является монолитной мембраной, что способствует быстрому и эффективному бесшовному соединению с большинством поверхностей.
Жидкая резина может быть модифицирована в соответствии с техническими требованиями заказчика практически для любой области применения: нужды кораблестроения, охрана окружающей среды, покрытие крыш с изломом, гидроизоляция. Она также хорошо подходит для защитных функций в области автомобилестроения, горнодобывающей промышленности, сельского хозяйства, гражданского строительства и т. д.
Уникальные качества жидкой резины:
- является эластичной и гибкой и таким образом допускает определенное смещение лежащей под ней поверхности;
позволяет связать огромное количество трещин и мелких отверстий даже в самом гладком бетонном покрытии, обеспечивая тем самым непревзойднную гидроизоляцию;
наносится и затвердевает без подогрева: для нее не требуеются потенциально небезопасные горелки или варочные котлы, которые требуются для обычных мембранных покрытий;
практическим мгновенно затвердевает на 80%;
жидкая резина не имеет в своем составе растворителей и не испараяет летучих органических соединений;
дает равномерное покрытие толстым слоем;
облегчает подготовку покрытия;
допускает наличие некоторой влаги на поверхности предназначенной для покрытия;
безопасна для работников;
имеет первоклассный противопожарный рейтинг;
обладает устойчивостью к широкому спектру химических продуктов;
является изоляционным материалом с катодными (притягивающими, осаждающими) свойствами.
КОНКУРЕНТНЫЕ ПРЕИМУЩЕСТВА ЖИДКОЙ РЕЗИНЫ
Возможность обработки поверхности со сложным рельефом
Высокая ремонтопригодность
Однокомпонентное покрытие, двухкомпонентное покрытие
Прочное сцепление с большинством строительных материалов (бетонная, металлическая, кирпичная, деревянная и другие поверхности)
Бесшовная пленка, предохраняющая обрабатываемую поверхность от вредного воздействия коррозии, воды и химических веществ
100%-ая гидроизоляция
Возможность отказаться от других защитных материалов
Отсутствие соединительных швов, перехлестов
Растяжение до уровня свыше 1650%, восстановление формы до 95%
Не нарушает конструктивную целостность поверхностей защищаемых объектов при монтаже, ремонте и эксплуатации ( не требует креплений, дюбелей и пр.)
Напыляемое и уже затвердевшее покрытие образует бесшовное, стопроцентное соединение с поверхностью и исключает проблемы, связанные с загрязнением окружающей среды, которые часто встречаются при использовании обычных систем покрытия. К тому же сокращаются расходы на оплату труда рабочих: бригада из трех человек может нанести на хорошо подготовленную поверхность примерно от 800 до 1400 м2 покрытия в течение одного рабочего дня.
Для большинства существующих методов покрытия (гидроизоляции) требуются швы или соединительные детали, а также механические или химические технологии крепления, которые обычно становятся причинами дефекта мембраны. В сравнении с ними гидроизоляция на основе жидкой резины является монолитной мембраной, что способствует быстрому и эффективному бесшовному соединению с большинством поверхностей.
Жидкая резина может быть модифицирована в соответствии с техническими требованиями заказчика практически для любой области применения: нужды кораблестроения, охрана окружающей среды, покрытие крыш с изломом, гидроизоляция. Она также хорошо подходит для защитных функций в области автомобилестроения, горнодобывающей промышленности, сельского хозяйства, гражданского строительства и т. д.
Уникальные качества жидкой резины:
- является эластичной и гибкой и таким образом допускает определенное смещение лежащей под ней поверхности;
позволяет связать огромное количество трещин и мелких отверстий даже в самом гладком бетонном покрытии, обеспечивая тем самым непревзойднную гидроизоляцию;
наносится и затвердевает без подогрева: для нее не требуеются потенциально небезопасные горелки или варочные котлы, которые требуются для обычных мембранных покрытий;
практическим мгновенно затвердевает на 80%;
жидкая резина не имеет в своем составе растворителей и не испараяет летучих органических соединений;
дает равномерное покрытие толстым слоем;
облегчает подготовку покрытия;
допускает наличие некоторой влаги на поверхности предназначенной для покрытия;
безопасна для работников;
имеет первоклассный противопожарный рейтинг;
обладает устойчивостью к широкому спектру химических продуктов;
является изоляционным материалом с катодными (притягивающими, осаждающими) свойствами.
КОНКУРЕНТНЫЕ ПРЕИМУЩЕСТВА ЖИДКОЙ РЕЗИНЫ
Возможность обработки поверхности со сложным рельефом
Высокая ремонтопригодность
Однокомпонентное покрытие, двухкомпонентное покрытие
Прочное сцепление с большинством строительных материалов (бетонная, металлическая, кирпичная, деревянная и другие поверхности)
Бесшовная пленка, предохраняющая обрабатываемую поверхность от вредного воздействия коррозии, воды и химических веществ
100%-ая гидроизоляция
Возможность отказаться от других защитных материалов
Отсутствие соединительных швов, перехлестов
Растяжение до уровня свыше 1650%, восстановление формы до 95%
Не нарушает конструктивную целостность поверхностей защищаемых объектов при монтаже, ремонте и эксплуатации ( не требует креплений, дюбелей и пр.)
РЕЗИНА
РЕЗИНА - эластичный материал, образующийся в результате вулканизации натурального (НК) и синтетических каучуков (СК). Представляет собой сетчатый эластомер-продукт поперечного сшивания молекул каучуков химическими связями. Свойства определяются как применяемым каучуком, так и ингредиентами резиновой смеси (подробнее ниже). Резины, в общем, имеют более высокую теплостойкость, чем каучуки. Современная физическая теория упрочнения каучука объясняет повышение его прочности наличием сил связи (адсорбции и адгезии), возникающих между каучуком и наполнителем, а также образованием непрерывной цепочно-сетчатой структуры наполнителя вследствие взаимодействия между частицами наполнителя. Возможно и химическое взаимодействие каучука с наполнителем.
Техническая резина - композиционный материал, который может содержать до 15-20 ингредиентов, выполняющих в резине разнообразные функции. Главное отличие резины от других полимерных материалов - это способность к большим обратимым деформациям в широком интервале температур. Необратимая, или пластическая, составляющая деформации резины намного меньше, чем у каучука, поскольку макромолекулы каучука соединены в резине поперечными химическими связями (так называемая вулканизационная сетка). Резина превосходит каучук по прочностным свойствам, теплостойкости и морозостойкости, а также устойчивости к действию агрессивных сред.
Деформирование саженаполненных резин, характеризующихся высоким внутренним трением, обусловливает преобразование механической энергии деформации в тепловую. Этим объясняется высокая амортизационная способность резины.. Однако из-за низкой теплопроводности резины многократное циклическое нагружение массивных изделий, например шин, приводит к их саморазогреву (т. н. теплообразование).. Следствием этого может быть ухудшение эксплуатационных свойств изделий.
В реальных условиях эксплуатации резина находится в сложнонапряжённом состоянии, поскольку на изделия действуют одновременно различные деформации. Однако разрушение резины вызывается, как правило, максимальным растягивающими напряжениями. По этой причине прочностные свойства резины оценивают в большинстве случаев при деформации растяжения.
Технические характеристики резины существенно зависят от режимов приготовления резиновой смеси и ее вулканизации, от условий хранения полуфабрикатов и изделий и др. Свойства резин на основе каучуков, макромолекулы которых содержат ненасыщенные связи, могут ухудшаться при эксплуатации резины в условиях длительного воздействия повышенных температур, кислорода, озона, ультрафиолетового света.
Техническая резина - композиционный материал, который может содержать до 15-20 ингредиентов, выполняющих в резине разнообразные функции. Главное отличие резины от других полимерных материалов - это способность к большим обратимым деформациям в широком интервале температур. Необратимая, или пластическая, составляющая деформации резины намного меньше, чем у каучука, поскольку макромолекулы каучука соединены в резине поперечными химическими связями (так называемая вулканизационная сетка). Резина превосходит каучук по прочностным свойствам, теплостойкости и морозостойкости, а также устойчивости к действию агрессивных сред.
Деформирование саженаполненных резин, характеризующихся высоким внутренним трением, обусловливает преобразование механической энергии деформации в тепловую. Этим объясняется высокая амортизационная способность резины.. Однако из-за низкой теплопроводности резины многократное циклическое нагружение массивных изделий, например шин, приводит к их саморазогреву (т. н. теплообразование).. Следствием этого может быть ухудшение эксплуатационных свойств изделий.
В реальных условиях эксплуатации резина находится в сложнонапряжённом состоянии, поскольку на изделия действуют одновременно различные деформации. Однако разрушение резины вызывается, как правило, максимальным растягивающими напряжениями. По этой причине прочностные свойства резины оценивают в большинстве случаев при деформации растяжения.
Технические характеристики резины существенно зависят от режимов приготовления резиновой смеси и ее вулканизации, от условий хранения полуфабрикатов и изделий и др. Свойства резин на основе каучуков, макромолекулы которых содержат ненасыщенные связи, могут ухудшаться при эксплуатации резины в условиях длительного воздействия повышенных температур, кислорода, озона, ультрафиолетового света.
Подписаться на:
Сообщения (Atom)